Skip to main content
Log in

Influence of Corrosion on Electrical and Mechanical Properties of Porcelain Suspension Insulators: An Overview

  • Review Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Corrosion of porcelain insulators has become a consequential threat to the secure and steady performance of power utilities. The losses due to corrosion have been calculated to be approximately 2–5% of the gross national product of any country. Under the influence of various contaminated environment, space between lower surface of iron cap and porcelain surface bridged by water which supports corrosion in iron cap and pin because of electrolytic process. Investigations validate corrosion found within metal part of insulators can worsen the bond between metal part and other accessories surrounding it and degrade its electrical and mechanical characteristics. These issues can be suppressed partially by utilizing various approaches such as washing and greasing of insulators, utilizing corrosion resistant metals and nonmetallic pins, zinc sleeve concept and U-shaped zinc ring etc. This paper highlights principle of corrosion mechanism especially focusing on corrosion occurs in metal part of insulators, causes of corrosion, dominance of pin and iron cap corrosion on mechanical and electrical characteristics of insulators. Furthermore, various approaches for suppression of corrosion in metal part of suspension insulators have been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Zhang, Yu. Yongqing, G. Li, J. Fan, S. Zhiyi, L. Jiayu, B. Li, Proc. CSEE 27, 7 (2007)

    Google Scholar 

  2. T. Taniguchi, M. Watanabe, Y. Watanabe, IEEE Trans. Power Deliv. 6, 3 (1991)

    Article  Google Scholar 

  3. K. Naito, K. Sakanishi, Y. Suzuki, M. Ito, Trans. IEE Jpn. 100, 9 (1980)

    Google Scholar 

  4. J.J. Taylor, A.D. Lantz Jr., CIGRE 211, 7 (1960)

    Google Scholar 

  5. Visual Inspection of Porcelain and Glass Disc Insulators, Project 3002005628, Electric Power Research. Institute Report, November 2015

  6. L. Luo, L. Wang, H. Mei, Z. Guan, IEEE Trans. Dielectr. Electr. Insul. 23, 1 (2016)

    Google Scholar 

  7. V.I. Galanov, L.A. Koshcheev, V.L. Dimitrev, Research center of HVDC transmission technology, the former Soviet Union

  8. A.W. Bardeen, J.M. Sheadel, A.I.E.E. Trans, Power Apparatus Syst. 3, 491–501 (1956)

    Google Scholar 

  9. X. Jiang, B. Dong, H. Qin, F. Yin, IEEE Trans. Dielectr. Electr. Insul. 20, 2 (2013)

    Article  Google Scholar 

  10. K.C. Holte, D.E. Alexander, D.M. Baker, IEEE Trans. Power Apparatus Syst. 98, 5 (1979)

    Google Scholar 

  11. I.M. Crabtree, K.J. Mackey, K. Kito, IEEE Trans. Power Apparatus Syst. 3, 645–654 (1985)

    Article  Google Scholar 

  12. K. Kito, S. Kosaka, K. Sakanishi, NGK Rev. 43, 21–28 (1982)

    Google Scholar 

  13. L. Luo, L. Wang, Z. Guan, Electrical Insulation Conference (IEEE, 2014)

  14. L. Luo, L. Wang, Z. Guan, IEEE Trans. Dielectr. Electr. Insul. 22, 4 (2015)

    Article  Google Scholar 

  15. L. Luo, L. Wang, Z. Guan, IEEE Trans. Dielectr. Electr. Insul. 21, 6 (2014)

    Google Scholar 

  16. P. Bresesti, W.L. Kling, R.L. Hendriks, IEEE Trans. Energy Convers. 22, 1 (2007)

    Article  Google Scholar 

  17. C.A.O. Peixoto, L. Pargamin, IEEE Trans. Power Deliv. 3, 2 (1988)

    Article  Google Scholar 

  18. S.U. Zhiyi, Proc. CSEE 7, 6 (2007)

    Google Scholar 

  19. J.H. Mason, F.R. Silva, Fifth International Conference on Dielectric Materials, Measurements and Applications (IEEE, 1988)

  20. S.M. Gubanski, IEEE Electr. Insul. Mag. 21, 6 (2005)

    Article  Google Scholar 

  21. X. Wang, X. Man, X. Cao, Fifth International Conference on Properties & Applications of Dielectric Materials (IEEE, 2006)

  22. J.S. Forrest, P.J. Lambeth, Inst. Electr. Eng. 107, 32 (1959)

    Google Scholar 

  23. R.B. Comizzoli, R.P. Frankenthal, Science 234, 4774 (1986)

    Article  Google Scholar 

  24. Z. Yang, X. Jiang, Z. Zhang, D. Zhang, IEEE Trans. Dielectr. Electr. Insul. 23, 6 (2016)

    CAS  Google Scholar 

  25. T. Ito, Y. Morishima, IEEJ Trans. Electr. Electron. Eng. 4, 422–424 (2009)

    Article  CAS  Google Scholar 

  26. T. Ito, Y. Morishima, IEEJ Trans. Electr. Electron. Eng. 3, 313–316 (2008)

    Article  Google Scholar 

  27. Grantw13, Electrical Insulator Flashover (Wikipedia, 2012), https://en.wikipedia.org/wiki/File:Electrical_insulator_flashover_from_volcanic_ash.jpg

  28. J.W. Osenbach, Semicond. Sci. Technol. 11, 7 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsin Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanyal, S., Kim, T., Jeon, S. et al. Influence of Corrosion on Electrical and Mechanical Properties of Porcelain Suspension Insulators: An Overview. Trans. Electr. Electron. Mater. 21, 543–549 (2020). https://doi.org/10.1007/s42341-020-00239-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00239-3

Keywords

Navigation