Abstract
Thin Film Transistors (TFTs) have lived to see its significant technological improvement for various display applications in recent years. Carbon nanotube (CNT) based TFT technologies have been found to be a promising component for next generation flexible electronics and flat panel displays in view of CNTs high carrier mobility, device stability and mechanical flexibility. However, the design of CNT-TFT is still not well established, especially with a view to achieve the best performance still protecting thermal stability. In this study, the authors had analysed the device structure and operation of transistor in which carbon nanotubes act as active channel region. CNT-TFT with different device geometrics and CNT physical parameters such as channel length, channel width, CNT tube length, network density and its orientation have been extensively studied using NanoNet simulation tool. This study has thrown new insight into the device performance characteristics of CNT-TFTs. The results show that it is essential to fix the length of the channel more than 5 µm for restricting the device temperature at 300 K and it can be brought down as low as 3 µm if the maximum operating temperature can be 400 K. Comparison with already reported experimental results show that the TFT parameters returned by the simulation experiments and presented in this paper match closely.
This is a preview of subscription content, access via your institution.










References
- 1.
J. Chen, S. Mishra, D. Vaca, N. Kumar, W.H. Yeo, S. Sitaraman, Nanotechnology (2020). https://doi.org/10.1088/1361-6528/ab703f
- 2.
J. Smith, M. Goryll, E. Howard, B. Obrien, M. Strnad, E. Bawolek, M. Marrs, Y.-K. Lee, J. Blain Christen, Electron. Lett. (2015). https://doi.org/10.1049/el.2015.1497
- 3.
R.E.I. Schropp, B. Stannowski, J.K. Rath, J. Non-Cryst. Solids 299, 1304–1310 (2002). https://doi.org/10.1016/s0022-3093(01)01095-x
- 4.
J. Liu, D. Buchholz, J. Hennek, R. Chang, A. Facchetti, T. Marks, J. Am. Chem. Soc. 132, 11934–11942 (2010). https://doi.org/10.1021/ja9103155
- 5.
H. Ko, V. Tsukruk, Nano Lett. 6, 1443–1448 (2006). https://doi.org/10.1021/nl060608r
- 6.
M. Timmermans, D. Estrada, A. Nasibulin, J. Wood, A. Behnam, D. Sun, Y. Ohno, J. Lyding, A. Hassanien, E. Pop, Nano Res. 5, 307–319 (2012). https://doi.org/10.1007/s12274-012-0211-8
- 7.
S. Jun, M. Shinji, L. Fang-Chen, B. Ion, John Wiley and Sons Ltd. HB ISBN: 9781119161349 (2018)
- 8.
T.-C. Chang, Y.-C. Tsao, P.-H. Chen, M.-C. Tai, S.-P. Huang, W.-C. Su, G.-F. Chen, Mater. Today Adv. 5, 100040 (2020). https://doi.org/10.1016/j.mtadv.2019.100040
- 9.
X. Gao, L. Lin, Y. Liu, X. Huang, J. Disp. Technol. 11, 1 (2015). https://doi.org/10.1109/jdt.2015.2419656
- 10.
A. Saboundji, N. Coulon, A. Gorin, H. Lhermite, T. Mohammedbrahim, M. Fonrodona, J. Bertomeu, J. Andreu, Thin Solid Films 487, 227–231 (2005). https://doi.org/10.1016/j.tsf.2005.01.070
- 11.
P. He, Y. Deng, C. Chen, M. Zhang, 13–16. https://doi.org/10.1109/edssc.2016.7785199 (2016)
- 12.
C. Du, Y. Deng, K. Zhu, Y. Gao, M. Zhang, 502–505. https://doi.org/10.1109/nano.2017.8117262 (2017)
- 13.
R. Daniel, K. Bhat, E. Bhattacharya, Microelectron. Eng. 83, 252–258 (2006). https://doi.org/10.1016/j.mee.2005.07.089
- 14.
K.N. Bhat, R.J. Daniel, E. Bhattacharya, Electron. Lett. 42, 721–722 (2006). https://doi.org/10.1049/el:20060480
- 15.
D. Sarangi, I. Arfaoui, J. Bonard, Phys. B-Condens. Matter 323, 165–167 (2002). https://doi.org/10.1016/S0921-4526(02)00889-X
- 16.
X. Liang, J. Xia, G. Dong, T. Boyuan. https://doi.org/10.1007/978-3-030-12700-8_8 (2019)
- 17.
J. Rogers, G. Blanchet, Patterning Tech. Semicond. Mater. Flex. Electron. (2005). https://doi.org/10.1002/0470870508.ch11
- 18.
B. Ullmann, T. Grasser, e& i Elektrotechnik und Informationstechnik (2017). https://doi.org/10.1007/s00502-017-0534-y
- 19.
S. Park, M. Vosgueritchian, Z. Bao, Nanoscale (2013). https://doi.org/10.1039/c3nr33560g
- 20.
P. Avouris, Acc. Chem. Res. 35, 1026–1034 (2003). https://doi.org/10.1002/chin.200308225
- 21.
M. Anantram, F. Léonard, Rep. Prog. Phys. 69, 507 (2006). https://doi.org/10.1088/0034-4885/69/3/R01
- 22.
C.-R. Wang, J. Zhang, K. Ryu, A. Badmaev, L. Gomez, C. Zhou, Nano Lett. 9, 4285–4291 (2009). https://doi.org/10.1021/nl902522f
- 23.
D. Sun, C. Liu, W.-C. Ren, H.-M. Cheng, Adv. Electron. Mater. 2, 1600229 (2016). https://doi.org/10.1002/aelm.201600229
- 24.
Q. Cao, H.-S. Kim, N. Pimparkar, J. Kulkarni, C. Wang, M. Shim, K. Roy, M. Alam, J. Rogers, Nature 454, 495–500 (2008). https://doi.org/10.1038/nature07110
- 25.
D. Hines, S. Mezhenny, M. Ballarotto, E. Williams, V. Ballarotto, G. Esen, A. Southard, M. Fuhrer, Appl. Phys. Lett. (2005). https://doi.org/10.1063/1.1901809
- 26.
B. Chandra, A. Maarouf, G. Martyna, G. Tulevski, Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3622767
- 27.
S. Kumar, N. Pimparkar, J.Y. Murthy, M.A. Alam, Appl. Phys. Lett. 88, 123505 (2006). https://doi.org/10.1063/1.2187401
- 28.
N. Pimparkar, Q. Cao, S. Kumar, J. Murthy, J. Rogers, M. Alam, Electron Device Lett. IEEE 28, 157–160 (2007). https://doi.org/10.1109/LED.2006.889219
- 29.
Y. Wu, X. Lin, M. Zhang, J. Nanomater. (2013). https://doi.org/10.1155/2013/627215
- 30.
S. Kumar, M.P. Gupta, N. Pimparkar, J. Murthy, M. Alam, NanoNet. (2016). https://doi.org/10.4231/D3VQ2SB8R
- 31.
C. Wang, J.-C. Chien, K. Takei, T. Takahashi, J. Nah, A. Niknejad, A. Javey, Nano Lett. 12, 1527–1533 (2012). https://doi.org/10.1021/nl2043375
- 32.
Q. Cao, S-J Han, G. Tulevski, Y. Zhu, D. Lu, W. Haensch, 8. https://doi.org/10.1038/nnano.2012.257 (2013)
- 33.
K. Ryu, A. Badmaev, C.-R. Wang, A. Lin, N. Patil, L. Gomez, A. Kumar, S. Mitra, H.-S. Philip Wong, C. Zhou, Nano Lett. 9, 189–197 (2009). https://doi.org/10.1021/nl802756u
Acknowledgements
The authors express their sincere gratitude to the NPMaSS authorities for providing the MEMS simulation and design tools to NPMaSS MEMS Design centre-Annamalai University and financial support from Digital India Corporation, Ministry of Electronics and Information Technology, Government of India through Visvesvaraya Ph.D. scheme.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Venkatesan, R., Joseph Daniel, R. & Shanmugaraja, P. Optimization of CNT and TFT Parameters for Maximum Transconductance and Safe Temperature Operation of Carbon Nanotube Thin-Film Transistors (CNT-TFTs) Employed in Flat Panel Displays. Trans. Electr. Electron. Mater. 22, 47–56 (2021). https://doi.org/10.1007/s42341-020-00216-w
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- IC-Scaling
- CNT
- Nano transistors
- Flexible electronics
- Network transistor
- CNT-TFT