Optimization of CNT and TFT Parameters for Maximum Transconductance and Safe Temperature Operation of Carbon Nanotube Thin-Film Transistors (CNT-TFTs) Employed in Flat Panel Displays

Abstract

Thin Film Transistors (TFTs) have lived to see its significant technological improvement for various display applications in recent years. Carbon nanotube (CNT) based TFT technologies have been found to be a promising component for next generation flexible electronics and flat panel displays in view of CNTs high carrier mobility, device stability and mechanical flexibility. However, the design of CNT-TFT is still not well established, especially with a view to achieve the best performance still protecting thermal stability. In this study, the authors had analysed the device structure and operation of transistor in which carbon nanotubes act as active channel region. CNT-TFT with different device geometrics and CNT physical parameters such as channel length, channel width, CNT tube length, network density and its orientation have been extensively studied using NanoNet simulation tool. This study has thrown new insight into the device performance characteristics of CNT-TFTs. The results show that it is essential to fix the length of the channel more than 5 µm for restricting the device temperature at 300 K and it can be brought down as low as 3 µm if the maximum operating temperature can be 400 K. Comparison with already reported experimental results show that the TFT parameters returned by the simulation experiments and presented in this paper match closely.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    J. Chen, S. Mishra, D. Vaca, N. Kumar, W.H. Yeo, S. Sitaraman, Nanotechnology (2020). https://doi.org/10.1088/1361-6528/ab703f

    Article  Google Scholar 

  2. 2.

    J. Smith, M. Goryll, E. Howard, B. Obrien, M. Strnad, E. Bawolek, M. Marrs, Y.-K. Lee, J. Blain Christen, Electron. Lett. (2015). https://doi.org/10.1049/el.2015.1497

    Article  Google Scholar 

  3. 3.

    R.E.I. Schropp, B. Stannowski, J.K. Rath, J. Non-Cryst. Solids 299, 1304–1310 (2002). https://doi.org/10.1016/s0022-3093(01)01095-x

    Article  Google Scholar 

  4. 4.

    J. Liu, D. Buchholz, J. Hennek, R. Chang, A. Facchetti, T. Marks, J. Am. Chem. Soc. 132, 11934–11942 (2010). https://doi.org/10.1021/ja9103155

    CAS  Article  Google Scholar 

  5. 5.

    H. Ko, V. Tsukruk, Nano Lett. 6, 1443–1448 (2006). https://doi.org/10.1021/nl060608r

    CAS  Article  Google Scholar 

  6. 6.

    M. Timmermans, D. Estrada, A. Nasibulin, J. Wood, A. Behnam, D. Sun, Y. Ohno, J. Lyding, A. Hassanien, E. Pop, Nano Res. 5, 307–319 (2012). https://doi.org/10.1007/s12274-012-0211-8

    CAS  Article  Google Scholar 

  7. 7.

    S. Jun, M. Shinji, L. Fang-Chen, B. Ion, John Wiley and Sons Ltd. HB ISBN: 9781119161349 (2018)

  8. 8.

    T.-C. Chang, Y.-C. Tsao, P.-H. Chen, M.-C. Tai, S.-P. Huang, W.-C. Su, G.-F. Chen, Mater. Today Adv. 5, 100040 (2020). https://doi.org/10.1016/j.mtadv.2019.100040

    Article  Google Scholar 

  9. 9.

    X. Gao, L. Lin, Y. Liu, X. Huang, J. Disp. Technol. 11, 1 (2015). https://doi.org/10.1109/jdt.2015.2419656

    Article  Google Scholar 

  10. 10.

    A. Saboundji, N. Coulon, A. Gorin, H. Lhermite, T. Mohammedbrahim, M. Fonrodona, J. Bertomeu, J. Andreu, Thin Solid Films 487, 227–231 (2005). https://doi.org/10.1016/j.tsf.2005.01.070

    CAS  Article  Google Scholar 

  11. 11.

    P. He, Y. Deng, C. Chen, M. Zhang, 13–16. https://doi.org/10.1109/edssc.2016.7785199 (2016)

  12. 12.

    C. Du, Y. Deng, K. Zhu, Y. Gao, M. Zhang, 502–505. https://doi.org/10.1109/nano.2017.8117262 (2017)

  13. 13.

    R. Daniel, K. Bhat, E. Bhattacharya, Microelectron. Eng. 83, 252–258 (2006). https://doi.org/10.1016/j.mee.2005.07.089

    CAS  Article  Google Scholar 

  14. 14.

    K.N. Bhat, R.J. Daniel, E. Bhattacharya, Electron. Lett. 42, 721–722 (2006). https://doi.org/10.1049/el:20060480

    CAS  Article  Google Scholar 

  15. 15.

    D. Sarangi, I. Arfaoui, J. Bonard, Phys. B-Condens. Matter 323, 165–167 (2002). https://doi.org/10.1016/S0921-4526(02)00889-X

    CAS  Article  Google Scholar 

  16. 16.

    X. Liang, J. Xia, G. Dong, T. Boyuan. https://doi.org/10.1007/978-3-030-12700-8_8 (2019)

  17. 17.

    J. Rogers, G. Blanchet, Patterning Tech. Semicond. Mater. Flex. Electron. (2005). https://doi.org/10.1002/0470870508.ch11

    Article  Google Scholar 

  18. 18.

    B. Ullmann, T. Grasser, e& i Elektrotechnik und Informationstechnik (2017). https://doi.org/10.1007/s00502-017-0534-y

    Article  Google Scholar 

  19. 19.

    S. Park, M. Vosgueritchian, Z. Bao, Nanoscale (2013). https://doi.org/10.1039/c3nr33560g

    Article  Google Scholar 

  20. 20.

    P. Avouris, Acc. Chem. Res. 35, 1026–1034 (2003). https://doi.org/10.1002/chin.200308225

    Article  Google Scholar 

  21. 21.

    M. Anantram, F. Léonard, Rep. Prog. Phys. 69, 507 (2006). https://doi.org/10.1088/0034-4885/69/3/R01

    CAS  Article  Google Scholar 

  22. 22.

    C.-R. Wang, J. Zhang, K. Ryu, A. Badmaev, L. Gomez, C. Zhou, Nano Lett. 9, 4285–4291 (2009). https://doi.org/10.1021/nl902522f

    CAS  Article  Google Scholar 

  23. 23.

    D. Sun, C. Liu, W.-C. Ren, H.-M. Cheng, Adv. Electron. Mater. 2, 1600229 (2016). https://doi.org/10.1002/aelm.201600229

    CAS  Article  Google Scholar 

  24. 24.

    Q. Cao, H.-S. Kim, N. Pimparkar, J. Kulkarni, C. Wang, M. Shim, K. Roy, M. Alam, J. Rogers, Nature 454, 495–500 (2008). https://doi.org/10.1038/nature07110

    CAS  Article  Google Scholar 

  25. 25.

    D. Hines, S. Mezhenny, M. Ballarotto, E. Williams, V. Ballarotto, G. Esen, A. Southard, M. Fuhrer, Appl. Phys. Lett. (2005). https://doi.org/10.1063/1.1901809

    Article  Google Scholar 

  26. 26.

    B. Chandra, A. Maarouf, G. Martyna, G. Tulevski, Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3622767

    Article  Google Scholar 

  27. 27.

    S. Kumar, N. Pimparkar, J.Y. Murthy, M.A. Alam, Appl. Phys. Lett. 88, 123505 (2006). https://doi.org/10.1063/1.2187401

    CAS  Article  Google Scholar 

  28. 28.

    N. Pimparkar, Q. Cao, S. Kumar, J. Murthy, J. Rogers, M. Alam, Electron Device Lett. IEEE 28, 157–160 (2007). https://doi.org/10.1109/LED.2006.889219

    CAS  Article  Google Scholar 

  29. 29.

    Y. Wu, X. Lin, M. Zhang, J. Nanomater. (2013). https://doi.org/10.1155/2013/627215

    Article  Google Scholar 

  30. 30.

    S. Kumar, M.P. Gupta, N. Pimparkar, J. Murthy, M. Alam, NanoNet. (2016). https://doi.org/10.4231/D3VQ2SB8R

    Article  Google Scholar 

  31. 31.

    C. Wang, J.-C. Chien, K. Takei, T. Takahashi, J. Nah, A. Niknejad, A. Javey, Nano Lett. 12, 1527–1533 (2012). https://doi.org/10.1021/nl2043375

    CAS  Article  Google Scholar 

  32. 32.

    Q. Cao, S-J Han, G. Tulevski, Y. Zhu, D. Lu, W. Haensch, 8. https://doi.org/10.1038/nnano.2012.257 (2013)

  33. 33.

    K. Ryu, A. Badmaev, C.-R. Wang, A. Lin, N. Patil, L. Gomez, A. Kumar, S. Mitra, H.-S. Philip Wong, C. Zhou, Nano Lett. 9, 189–197 (2009). https://doi.org/10.1021/nl802756u

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the NPMaSS authorities for providing the MEMS simulation and design tools to NPMaSS MEMS Design centre-Annamalai University and financial support from Digital India Corporation, Ministry of Electronics and Information Technology, Government of India through Visvesvaraya Ph.D. scheme.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Joseph Daniel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Venkatesan, R., Joseph Daniel, R. & Shanmugaraja, P. Optimization of CNT and TFT Parameters for Maximum Transconductance and Safe Temperature Operation of Carbon Nanotube Thin-Film Transistors (CNT-TFTs) Employed in Flat Panel Displays. Trans. Electr. Electron. Mater. 22, 47–56 (2021). https://doi.org/10.1007/s42341-020-00216-w

Download citation

Keywords

  • IC-Scaling
  • CNT
  • Nano transistors
  • Flexible electronics
  • Network transistor
  • CNT-TFT