Structural, Spectroscopic, Electronic and Optical Properties of Novel Platinum Doped (PMMA/ZrO2) and (PMMA/Al2O3) Nanocomposites for Electronics Devices

Abstract

This work reports a theoretical study to investigate the electronic structure and optimized geometry for pure PMMA and PMMA doped with ZrO2, Al2O3 and Pt nanoparticles for electronics devices. The studied structures are initially relaxed by employing the hybrid functional three parameter Lee–Yang–Parr B3LYP density functional theory at Gaussian 09 package of programs and Gaussian view 5.0.8 program. The PMMA is origin molecule before adding nanoparticles, also this work includes calculations of the electronic properties which contain total energy, energy of highest occupied molecular orbital, energy of lowest unoccupied molecular orbital, energy gap, ionization potential, electronic affinity, hardness, softness, electronegativity and electrophilic index. The geometrical optimization of PMMA has been found in good agreement with the experimental data due to its relaxed geometrical parameters. The electronic variables, such as, IE, EA, χ, S, H and ω are computed by the orbital vertical (Koopmans theorem), the nanocomposites studied need small energy to become cation due to ionization potential is smaller than original PMMA, but the electronic affinity are larger than the original PMMA. So, the hardness for nanocomposites was lowering values as compared with PMMA, therefore all the new molecules are softer, and this reduces the resistance of a species to lose electrons, and the total energy of the studied PMMA was decreased with added nanoparticles to the pure PMMA, total energy is a reflection of, binding energy of each sheet. The results showed that the nanoparticles added to PMMA reduces the energy gap. All nanoparticles constructed in this work have energy gap lower than that of original PMMA and the (PMMA–ZrO2–Pt) nanocomposites have the lowest value of energy gap. These results refer to construct new structures with new electronic properties to use it for modern electronics fields.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    M. Golestanipour, H. Khadivi, N. Sasani, M.H. Sadeghian, A novel, simple and cost effective al A356/Al2O3 nano-composite manufacturing route with uniform distribution of nanoparticles. Int. J. Eng. Trans. C Aspects 28(9), 1320–1327 (2015)

    CAS  Google Scholar 

  2. 2.

    M. Tanzifi, Z.T. Kolaei, M. Roushani, Characterization of polypyrrole-hydroxyethylcellulose/TiO2 nanocomposite: thermal properties and AFM analysis. Int. J. Eng. Trans. B Appl. 28(5), 654–661 (2014)

    Google Scholar 

  3. 3.

    A. Salehi, A. Babakhani, S.M. Zebarjad, Microstructural and mechanical properties of Al–SiO2 nanocomposite foams produced by an ultrasonic technique. Mater. Sci. Eng., A 638, 54–59 (2015)

    CAS  Google Scholar 

  4. 4.

    R. Jamaati, M.R. Toroghinejad, H. Edris, Effect of SiC nanoparticles on the mechanical properties of steel-based nanocomposite produced by accumulative roll bonding process. Mater. Des. 1980–2015(54), 168–173 (2014)

    Google Scholar 

  5. 5.

    G. Venugopal, J.C. Veetil, N. Raghavan, V. Singh, A. Kumar, A. Mukkannan, Nano-dynamic mechanical and thermal responses of single-walled carbon nanotubes reinforced polymer nanocomposite thinfilms. J. Alloys Compd. 688, 454–459 (2016)

    CAS  Google Scholar 

  6. 6.

    S. Peddini, C. Bosnyak, N. Henderson, C. Ellison, D. Paul, Nanocomposites from styrene–butadiene rubber (SBR) and multiwall carbon nanotubes (MWCNT) part 2: mechanical properties. Polymer 56, 443–451 (2015)

    CAS  Google Scholar 

  7. 7.

    S.M. Shishavan, T. Azdast, S.R. Ahmadi, Investigation of the effect of nanoclay and processing parameters on the tensile strength and hardness of injection molded acrylonitrile butadiene styrene–organoclay nanocomposites. Mater. Des. 58, 527–534 (2014)

    Google Scholar 

  8. 8.

    T. Motaung, M. Saladino, A. Luyt, D.C. Martino, The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of polycarbonate. Compos. Sci. Technol. 73, 34–39 (2012)

    CAS  Google Scholar 

  9. 9.

    G. Rezaei, N.B.M. Arab, Investigation on tensile strength of friction stir welded joints in PP/EPDM/clay nanocomposites. Int. J. Eng. Trans. C Aspects 28(9), 1383–1391 (2015)

    CAS  Google Scholar 

  10. 10.

    A. Almajid, L. Sorochynska, K. Friedrich, B. Wetzel, Effects of graphene and CNT on mechanical, thermal, electrical and corrosion properties of vinylester based nanocomposites. Plast., Rubber Compos. 44(2), 50–62 (2015)

    CAS  Google Scholar 

  11. 11.

    T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polym. Test. 31(1), 31–38 (2012)

    CAS  Google Scholar 

  12. 12.

    R.M. Mutiso, K.I. Winey, Electrical properties of polymer nanocomposites containing rod-like nanofillers. Prog. Polym. Sci. 40, 63–84 (2015)

    CAS  Google Scholar 

  13. 13.

    N. Herrera, A.P. Mathew, K. Oksman, Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos. Sci. Technol. 106, 149–155 (2015)

    CAS  Google Scholar 

  14. 14.

    J. Tuma, O. Lyutakov, I. Goncharova, V. Svorcik, Ag–PMMA structures for application in infra-red optical range. Mater. Chem. Phys. 148(1), 343–348 (2014)

    CAS  Google Scholar 

  15. 15.

    R. Balen, W.V. da Costa, J. de Lara Andrade, J.F. Piai, E.C. Muniz, M.V. Companhoni, T.U. Nakamura, S.M. Lima, L.H. da Cunha Andrade, P.R.S. Bittencourt, Structural, thermal, optical properties and cytotoxicity of PMMA/ZnO fibers and films: potential application in tissue engineering. Appl. Surf. Sci. 385, 257–267 (2016)

    CAS  Google Scholar 

  16. 16.

    Q.S. Ahmed, S. Bashir, S.A. Jalil, M.K. Shabbir, K. Mahmood, M. Akram, A. Khalid, N. Yaseen, A. Arshad, Surface, electrical and mechanical modifications of PMMA after implantation with laser produced iron plasma ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 378, 1–7 (2016)

    CAS  Google Scholar 

  17. 17.

    B. Saha, W.Q. Toh, E. Liu, S.B. Tor, J. Lee, A study on frictional behavior of PMMA against FDTS coated silicon as a function of load, velocity and temperature. Tribol. Int. 102, 44–51 (2016)

    CAS  Google Scholar 

  18. 18.

    A. Sargsyan, A. Tonoyan, S. Davtyan, C. Schick, The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data. Eur. Polym. J. 43, 3113–3127 (2007)

    CAS  Google Scholar 

  19. 19.

    B.J. Ash, D.F. Rogers, C.J. Wiegand, L.S. Schadler, R.W. Siegel, B.C. Benicewicz, T. Apple, Mechanical properties of Al2O3/polymethylmethacrylate nanocomposites. Polym. Compos. 23(6), 1014–1025 (2002)

    CAS  Google Scholar 

  20. 20.

    A. Al-Kawaz, A. Rubin, N. Badi, C. Blanck, L. Jacomine, I. Janowska, C. Pham-Huu, C. Gauthier, Tribological and mechanical investigation of acrylic-based nanocomposite coatings reinforced with PMMA-grafted-MWCNT. Mater. Chem. Phys. 175, 206–214 (2016)

    CAS  Google Scholar 

  21. 21.

    H. Liu, H. Ye, T. Lin, T. Zhou, Synthesis and characterization of PMMA/Al2O3 composite particles by in situ emulsion polymerization. Particuology 6(3), 207–213 (2008)

    Google Scholar 

  22. 22.

    N.A. Bezy, A.L. Fathima, Effect of TiO2 nanoparticles on mechanical properties of epoxy-resin system. Int. J. Eng. Res. Gen. Sci. 3, 143–151 (2015)

    Google Scholar 

  23. 23.

    A. Navidfar, T. Azdast, A. Karimzad Ghavidel, Influence of processing condition and carbon nanotube on mechanical properties of injection molded multi-walled carbon nanotube/poly (methyl methacrylate) nanocomposites. J. Appl. Polym. Sci. 133, 31 (2016)

    Google Scholar 

  24. 24.

    F.A. Ghasemi, S. Daneshpayeh, I. Ghasemi, M. Ayaz, An investigation on the Young’s modulus and impact strength of nanocomposites based on polypropylene/linear low-density polyethylene/titan dioxide (PP/LLDPE/TiO2) using response surface methodology. Polym. Bull. 73(6), 1741–1760 (2016)

    Google Scholar 

  25. 25.

    S. Srivastava, R.K. Tiwari, Synthesis of epoxy-TiO2 nanocomposites: a study on sliding wear behavior, thermal and mechanical properties. Int. J. Polym. Mater. 61(13), 999–1010 (2012)

    CAS  Google Scholar 

  26. 26.

    E. Al-Sarray, I. Akkurt, K. Günoglu, A. Evcin, N.Ç. Bezir, Acta Phys. Pol., A 132, 3 (2017)

    Google Scholar 

  27. 27.

    M. Aminian, M. Bakhshandeh, M.A. Farsani, E. Bakhshandeh, N. Shakeri, Iran. J. Nucl. Med. 25, 2 (2017)

    Google Scholar 

  28. 28.

    O. Gurler, U. Akar Tarim, Acta Phys. Pol., A 130, 1 (2016)

    Google Scholar 

  29. 29.

    M. Troyer, Computational Physics II (ETH Zurich, SS, Zurich, 2003)

    Google Scholar 

  30. 30.

    S. Mc Carthy, Calculation of the electronic structure of N-electron quantum dots using the Hartree–Fock method. M.Sc. thesis (University of Western Australia, 2000)

  31. 31.

    N.P. Maity, R. Maity, S. Baishya, A tunneling current model with a realistic barrier for ultra-thin high-k dielectric ZrO2 material based MOS devices. Silicon 10, 1645–1652 (2018). https://doi.org/10.1007/s12633-017-9648-4

    CAS  Article  Google Scholar 

  32. 32.

    A. Toda, S. Kishimoto, X-ray detection capabilities of plastic scintillators incorporated with ZrO2 nanoparticles. IEEE Trans. Nucl. Sci. (2020). https://doi.org/10.1109/tns.2020.2978240

    Article  Google Scholar 

  33. 33.

    N.P. Maity, R. Maity, S. Baishya, Influence of image force effect on tunneling current density for high-k material ZrO2 ultra thin films based MOS devices. J. Nanoelectron. Optoelectron. 12, 67–71 (2017)

    CAS  Google Scholar 

  34. 34.

    H.C. Miller, The effect of doping on the voltage holdoff performance of alumina insulators in vacuum. IEEE Trans. Electr. Insul. EI-20(3), 505–509 (1985)

    CAS  Google Scholar 

  35. 35.

    N.P. Maity, R. Maity, R.K. Thapa, S. Baishya, Image force effect on tunneling current for ultra thin high-K dielectric material Al2O3 based MOS devices. J. Nanoelectron. Optoelectron. 10(5), 645–648 (2015)

    CAS  Google Scholar 

  36. 36.

    A. Hashim, A. Jassim, Novel of (PVA–ST–PbO2) bio nanocomposites: preparation and properties for humidity sensors and radiation shielding applications. Sens. Lett. (2017). https://doi.org/10.1166/sl.2018.3915

    Article  Google Scholar 

  37. 37.

    H. Ahmed, H.M. Abduljalil, A. Hashim, Structural, optical and electronic properties of novel (PVA–MgO)/SiC nanocomposites films for humidity sensors. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00111-z

    Article  Google Scholar 

  38. 38.

    A. Hashim, M.A. Habeeb, Synthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperatures. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-018-0081-1

    Article  Google Scholar 

  39. 39.

    A. Hashim, Y. Al-Khafaji, A. Hadi, Synthesis and characterization of flexible resistive humidity sensors based on PVA/PEO/CuO nanocomposites. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00145-3

    Article  Google Scholar 

  40. 40.

    A. Hashim, M.A. Habeeb, A. Hadi, Synthesis of novel polyvinyl alcohol–starch–copper oxide nanocomposites for humidity sensors applications with different temperatures. Sens. Lett. 15(9), 758–761 (2017). https://doi.org/10.1166/sl.2017.3876

    Article  Google Scholar 

  41. 41.

    A. Hashim, A. Hadi, A novel piezoelectric materials prepared from (carboxymethyl cellulose-starch) blend-metal oxide nanocomposites. Sens. Lett. (2017). https://doi.org/10.1166/sl.2017.3910

    Article  Google Scholar 

  42. 42.

    A. Hashim, A. Hadi, Novel pressure sensors made from nanocomposites (biodegradable polymers–metal oxide nanoparticles): fabrication and characterization. Ukr. J. Phys. (2018). https://doi.org/10.15407/ujpe63.8.754

    Article  Google Scholar 

  43. 43.

    A. Hashim, Q. Hadi, Novel of (niobium carbide/polymer blend) nanocomposites: fabrication and characterization for pressure sensor. Sens. Lett. (2017). https://doi.org/10.1166/sl.2017.3892

    Article  Google Scholar 

  44. 44.

    A. Hashim, M.A. Habeeb, A. Hadi, Q.M. Jebur, W. Hadi, Fabrication of novel (PVA–PEG–CMC–Fe3O4) magnetic nanocomposites for piezoelectric applications. Sens. Lett. (2017). https://doi.org/10.1166/sl.2018.3935

    Article  Google Scholar 

  45. 45.

    A. Hashim, Z.S. Hamad, Fabrication and characterization of polymer blend doped with metal carbide nanoparticles for humidity sensors. J. Nanostruct. 9(2), 340–348 (2019). https://doi.org/10.22052/JNS.2019.02.016

    CAS  Article  Google Scholar 

  46. 46.

    D. Hassan, A.H. Ah-Yasari, Fabrication and studying the dielectric properties of (polystyrene–copper oxide) nanocomposites for piezoelectric application. Bull. Electr. Eng. Inform. (2019). https://doi.org/10.11591/eei.v8i1.1019

    Article  Google Scholar 

  47. 47.

    H. Ahmed, A. Hashim, Fabrication of novel (PVA/NiO/SiC) nanocomposites, structural, electronic and optical properties for humidity sensors. Int. J. Sci. Technol. Res. 8(11), 1015–1031 (2019)

    Google Scholar 

  48. 48.

    A. Hashim, M.A. Habeeb, A. Khalaf, A. Hadi, Fabrication of (PVA–PAA) blend-extracts of plants bio-composites and studying their structural, electrical and optical properties for humidity sensors applications. Sens. Lett. 15, 589–596 (2017). https://doi.org/10.1166/sl.2017.3856

    Article  Google Scholar 

  49. 49.

    A. Hashim, N. Hamid, Fabrication and properties of biopolymer-ceramics nanocomposites as UV-shielding for bionanoscience application. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1591

    Article  Google Scholar 

  50. 50.

    A. Hashim, Z.S. Hamad, Novel of (niobium carbide-biopolymer blend) nanocomposites: characterization for bioenvironmental applications. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1551

    Article  Google Scholar 

  51. 51.

    A. Hashim, K.H.H. Al-Attiyah, S.F. Obaid, Fabrication of novel (biopolymer blend-lead oxide nanoparticles) nanocomposites: structural and optical properties for low cost nuclear radiation shielding. Ukr. J. Phys. (2019). https://doi.org/10.15407/ujpe64.2.157

    Article  Google Scholar 

  52. 52.

    H. Khalid, H. Al-Attiyah, A. Hashim, S.F. Obaid, Fabrication of novel (carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol)/lead oxide nanoparticles: structural and optical properties for gamma rays shielding applications. Int. J. Plast. Technol. (2019). https://doi.org/10.1007/s12588-019-09228-5

    Article  Google Scholar 

  53. 53.

    A. Hashim, Z.S. Hamad, Synthesis, characterization and nanobiological application of (biodegradable polymers-titanium nitride) nanocomposites. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1561

    Article  Google Scholar 

  54. 54.

    B. Abbas, A. Hashim, Novel X-rays attenuation by (PMMA–PS–WC) new nanocompsites: fabrication, structural, optical characterizations and X-ray shielding application. Int. J. Emerg. Trends Eng. Res. (2019). https://doi.org/10.30534/ijeter/2019/06782019

    Article  Google Scholar 

  55. 55.

    A. Hashim, A. Hadi, Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukr. J. Phys. (2017). https://doi.org/10.15407/ujpe62.11.0978

    Article  Google Scholar 

  56. 56.

    A. Hashim, I.R. Agool, K.J. Kadhim, Modern developments in polymer nanocomposites for antibacterial and antimicrobial applications: a review. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1580

    Article  Google Scholar 

  57. 57.

    K.J. Kadhim, I.R. Agool, A. Hashim, Synthesis of (PVA–PEG–PVP–TiO2) nanocomposites for antibacterial application. Mater. Focus (2016). https://doi.org/10.1166/mat.2016.1371

    Article  Google Scholar 

  58. 58.

    K.J. Kadhim, I.R. Agool, A. Hashim, Effect of zirconium oxide nanoparticles on dielectric properties of (PVA–PEG–PVP) blend for medical application. J. Adv. Phys. (2017). https://doi.org/10.1166/jap.2017.1313

    Article  Google Scholar 

  59. 59.

    A. Hashim, H.M. Abduljalil, H. Ahmed, Fabrication and characterization of (PVA–TiO2)1 − x/SiCx nanocomposites for biomedical applications. Egypt. J. Chem. (2020). https://doi.org/10.21608/ejchem.2019.10712.1695

    Article  Google Scholar 

  60. 60.

    H. Ahmed, A. Hashim, Fabrication of PVA/NiO/SiC nanocomposites and studying their dielectric properties for antibacterial applications. Egypt. J. Chem. (2020). https://doi.org/10.21608/ejchem.2019.11109.1712

    Article  Google Scholar 

  61. 61.

    A. Hashim, H. Abduljalil, H. Ahmed, Analysis of optical, electronic and spectroscopic properties of (biopolymer-SiC) nanocomposites for electronics applications. Egypt. J. Chem. (2019). https://doi.org/10.21608/ejchem.2019.7154.1590

    Article  Google Scholar 

  62. 62.

    A. Hadi, A. Hashim, D. Hassan, Fabrication of new ceramics nanocomposites for solar energy storage and release. Bull. Electr. Eng. Inform. (2020). https://doi.org/10.11591/eei.v9i1.1323

    Article  Google Scholar 

  63. 63.

    F.L. Rashid, S.M. Talib, A. Hadi, A. Hashim, Novel of thermal energy storage and release: water/(SnO2–TaC) and water/(SnO2–SiC) nanofluids for environmental applications. IOP Conf. Ser. Mater. Sci. Eng. 454, 012113 (2018). https://doi.org/10.1088/1757-899x/454/1/012113

    CAS  Article  Google Scholar 

  64. 64.

    A. Hadi, F.L. Rashid, H.Q. Hussein, A. Hashim, Novel of water with (CeO2–WC) and (SiC–WC) nanoparticles systems for energy storage and release applications. IOP Conf. Ser. Mater. Sci. Eng. 518(3), 5 (2019). https://doi.org/10.1088/1757-899X/518/3/032059

    Article  Google Scholar 

  65. 65.

    F.L. Rashid, A. Hadi, N.H. Al-Garah, A. Hashim, Novel phase change materials, MgO nanoparticles, and water based nanofluids for thermal energy storage and biomedical applications. Int. J. Pharm. Phytopharmacol. Res. 8(1), 46–56 (2018)

    CAS  Google Scholar 

  66. 66.

    A.S. Shareef, F.L. Rashid, A. Hadi, A. Hashim, Water–polyethylene glycol/(SiC–WC) and (CeO2–WC) nanofluids for saving solar energy. Int. J. Sci. Technol. Res. 8(11), 1041–1043 (2019)

    Google Scholar 

  67. 67.

    H. Abduljalil, A. Hashim, A. Jewad, The effect of addition titanium dioxide on electrical properties of poly-methyl methacrylate. Eur. J. Sci. Res. 63(2), 231–235 (2011)

    Google Scholar 

  68. 68.

    Z. Al-Ramadhan, A. Hashim, A.J. Kadham Algidsawi, The D.C electrical properties of (PVC–Al2O3) composite. AIP Conf. Proc. (2011). https://doi.org/10.1063/1.3663109

    Article  Google Scholar 

  69. 69.

    M.A. Habbeb, A. Hashim, A.-R.K. AbidAli, The dielectric properties for (PMMA–LiF) composites. Eur. J. Sci. Res. 61(3), 367–371 (2011)

    Google Scholar 

  70. 70.

    F.A. Jasim, A. Hashim, A.G. Hadi, F. Lafta, S.R. Salman, H. Ahmed, Preparation of (pomegranate peel-polystyrene) composites and study their optical properties. Res. J. Appl. Sci. 8(9), 439–441 (2013)

    CAS  Google Scholar 

  71. 71.

    F.A. Jasim, F. Lafta, A. Hashim, M. Ali, A.G. Hadi, Characterization of palm fronds-polystyrene composites. J. Eng. Appl. Sci. 8(5), 140–142 (2013)

    CAS  Google Scholar 

  72. 72.

    I.R. Agool, F.S. Mohammed, A. Hashim, The effect of magnesium oxide nanoparticles on the optical and dielectric properties of (PVA–PAA–PVP) blend. Adv. Environ. Biol. 9(11), 1–11 (2015)

    CAS  Google Scholar 

  73. 73.

    F.L. Rashid, A. Hashim, M.A. Habeeb, S.R. Salman, H. Ahmed, Preparation of PS–PMMA copolymer and study the effect of sodium fluoride on its optical properties. J. Eng. Appl. Sci. 8(5), 137–139 (2013)

    CAS  Google Scholar 

  74. 74.

    S. Hadi, A. Hashim, A. Jewad, Optical properties of (PVA–LiF) composites. Aust. J. Basic Appl. Sci. 5(9), 2192–2195 (2011)

    CAS  Google Scholar 

  75. 75.

    Q.M. Jebur, A. Hashim, M.A. Habeeb, Structural, electrical and optical properties for (polyvinyl alcohol–polyethylene oxide–magnesium oxide) nanocomposites for optoelectronics applications. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00121-x

    Article  Google Scholar 

  76. 76.

    B.H. Rabee, A. Hashim, Synthesis and characterization of carbon nanotubes-polystyrene composites. Eur. J. Sci. Res. 60(2), 247–254 (2011)

    Google Scholar 

  77. 77.

    A. Hashim, Enhanced, structural, optical, and electronic properties of In2O3 and Cr2O3 nanoparticles doped polymer blend for flexible electronics and potential applications. J. Inorg. Organomet. Polym Mater. (2020). https://doi.org/10.1007/s10904-020-01528-3

    Article  Google Scholar 

  78. 78.

    A. Hadi, A. Hashim, Y. Al-Khafaji, Structural, optical and electrical properties of PVA/PEO/SnO2 new nanocomposites for flexible devices. Trans. Electr. Electron. Mater. (2020). https://doi.org/10.1007/s42341-020-00189-w

    Article  Google Scholar 

  79. 79.

    A. Hashim, Z.S. Hamad, Lower cost and higher UV-absorption of polyvinyl alcohol/silica nanocomposites for potential applications. Egypt. J. Chem. (2020). https://doi.org/10.21608/ejchem.2019.7264.1593

    Article  Google Scholar 

  80. 80.

    A. Hadi, Influence of titanium oxide on properties of (Fe2O3–Sb2O3) nanocomposites for renewable energy and electronics applications. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-020-00175-2

    Article  Google Scholar 

  81. 81.

    H.A. Kassim, D.A. Al-Mukhtar, Introduction to Quantum Mechanics (AL-Mousel University, Dar Al-Kutob, 1987). (in Arabic)

    Google Scholar 

  82. 82.

    R. Daudel, G. Leroy, D. Peeters, M. Sana, Quantum Chemistry (Wiley, New York, 1983)

    Google Scholar 

  83. 83.

    P. Chen, Qualitative MO Theory and Its Application to Organic Reactions, Thermal Rearrangements, Pericyclic Reactions (ETH Zurich, SS, Zurich, 2005)

    Google Scholar 

  84. 84.

    J. Simons, An Introduction to Theoretical Chemistry (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  85. 85.

    D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Theory Implementation (John Von Neumann Institute for Computing Zurich, Zurich, 2000)

    Google Scholar 

  86. 86.

    H. Dorsett, A. White, Overview of Molecular Modelling and Ab Initio Molecular Orbital Method Suitable for Use with Energetic Materials (Defence Science and Technology Organization, Rawalpindi, 2000)

    Google Scholar 

  87. 87.

    W. Thiel, Semi-empirical Methods (John Von Neumann institute for computing Zurich, Zurich, 2000)

    Google Scholar 

  88. 88.

    H.I. Aboud, A.J. Najim, Theoretical study of structures, energies, dipole moment, and IR spectra for amino benzene group molecules using density functional theory. J. Babylon Univ. 21, 254–261 (2011)

    Google Scholar 

  89. 89.

    H. Dorsett, A. White, Overview of Molecular and Ab Initio Molecular Orbital Methods Suitable for Use with Energetic Materials (Aeronautical and Maritime Research Laboratory, Australia, 2000)

    Google Scholar 

  90. 90.

    J. Grotenderst, High Performance Computing, in Chemistry, vol. 25, NIC Series (John Von Neumann Institute for Computing, Julich, 2004)

    Google Scholar 

  91. 91.

    R.G. Parr, W. Yang, Density Functional Theory of Atom and Molecules (Oxford University Press, Oxford, 1994)

    Google Scholar 

  92. 92.

    P. Romaniello, Time dependent current density functional theory for molecules. Ph.D. thesis (Materials Science Center, University of Groningeen, Netherlands, 2006)

  93. 93.

    K. Kim, K.D. Jordan, Comparison of density functional and MP2 calculations on the water monomer and dimer. J. Phys. Chem. 98, 10089–10094 (1994)

    CAS  Google Scholar 

  94. 94.

    P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994)

    CAS  Google Scholar 

  95. 95.

    P.A. Kollman, K.M. Merz, Computer modeling of the interactions of complex molecules. Acc. Chem. Res. 23, 246 (1990)

    CAS  Google Scholar 

  96. 96.

    R.S. Judson, E.P. Jaeger, A.M. Treasurywala, M.L. Peterson, Conformational searching methods for small molecules. II. Genetic algorithm approach. J. Comput. Chem. 14, 1407 (1993)

    CAS  Google Scholar 

  97. 97.

    A.M. Ali, Investigations of some antioxidant materials by using density functional and semiempirical theories. Ph. D. thesis (University of Basrah, College of Science, Department of Physics, 2009)

  98. 98.

    J.R. Sabin, S.B. Trickeypell, J. Oddershede, Molecularshape, capacitance and chemical hardness. Int. J. Quantum Chem. 77, 358 (2000)

    CAS  Google Scholar 

  99. 99.

    R.G. Pearson, Chemical hardness and density functional theory. J. Chem. Sci. 117(5), 369 (2005)

    CAS  Google Scholar 

  100. 100.

    A.J. Camargo, K.M. Honorio, R. Mercadante, F.A. Molfetta, C.N. Alves, A.B.F. dasilva, A study of neolignan compounds with biological activity against Paracoccidioides brasiliensis by using quantum chemical and chemometric methods. J. Braz. Chem. Soc. 14(5), 809 (2003)

    CAS  Google Scholar 

  101. 101.

    W.J. Hehre, L. Radom, P.R. Schleyer, J.A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986)

    Google Scholar 

  102. 102.

    H.B. Hassan, A study of the electronic structure of germanabenzene molecules. M.Sc. thesis (University of Babylon, College of Science, Department of Physics, 2011)

  103. 103.

    S. Naghavi, Theoretical study of correlated systems using hybrid functionals. Ph.D. thesis (Mainz University, 2010)

  104. 104.

    A. Satar, A spectral and structural studies of cobalt-phthalocyanine (CoPc). Ph.D. thesis (Al-Mustansiriyah University, 2010)

  105. 105.

    M. Lee, Identifying an Unknown Compound by Infrared Spectroscopy (Chemical Education Resources, Inc., Philadelphia, 1997)

    Google Scholar 

  106. 106.

    D.R. Lide, CRC Handbook of Chemistry and Physics (National Institute of Standards and Technology, CRC Press LLC, Boca Raton, 2005)

    Google Scholar 

  107. 107.

    R.T. Morrison, R.N. Boyd, Organic Chemistry, 6th edn. (New York University, New York, 2007)

    Google Scholar 

  108. 108.

    J.W. Ochterski, Vibrational Analysis in Gaussian (Gaussian Incorporation, Wallingford, 1999)

    Google Scholar 

  109. 109.

    T.L. Floyd, Electronic Devices, 7th edn. (Pearson Prentice Hall, Upper Saddle River, 2005)

    Google Scholar 

  110. 110.

    Y.D. Hugh, F.A. Roger, F.A. Lewis, University Physics with Modern Physics, 13th edn. (Pearson, London, 2012)

    Google Scholar 

  111. 111.

    C.D. John, J.W. Kenneth, Introduction to Physics, 8th edn. (Wiley, New York, 2010)

    Google Scholar 

  112. 112.

    A.P. Nikalje, Nanotechnology and its applications in medicine. Med. Chem. 5(2), 81–89 (2015)

    Google Scholar 

  113. 113.

    M.H. Makled, E. Sheha, T.S. Shanap, M.K. El-Mansy, J. Adv. Res. 4, 531–538 (2013)

    CAS  Google Scholar 

  114. 114.

    C.W. Liew, H.M. Ng, A. Numan, S. Ramesh, Polymers 8, 179 (2016)

    Google Scholar 

  115. 115.

    I.R. Agool, K.J. Kadhim, A. Hashim, Synthesis of (PVA–PEG–PVP–ZrO2) nanocomposites for energy release and gamma shielding applications. Int. J. Plast. Technol. (2017). https://doi.org/10.1007/s12588-017-9196-1

    Article  Google Scholar 

  116. 116.

    I.R. Agool, K.J. Kadhim, A. Hashim, Fabrication of new nanocomposites: (PVA–PEG–PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int. J. Plast. Technol. (2017). https://doi.org/10.1007/s12588-017-9192-5

    Article  Google Scholar 

  117. 117.

    A. Hashim, A. Hadi, Synthesis and characterization of novel piezoelectric and energy storage nanocomposites: biodegradable materials–magnesium oxide nanoparticles. Ukr. J. Phys. (2017). https://doi.org/10.15407/ujpe62.12.1050

    Article  Google Scholar 

  118. 118.

    F. Lin, Preparation and characterization of polymer TiO2 nanocomposites via in situ polymerization. Master’s thesis (University of Waterloo, 2006)

  119. 119.

    A. Hadi, A. Hashim, Development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. Ukr. J. Phys. (2017). https://doi.org/10.15407/ujpe62.12.1044

    Article  Google Scholar 

  120. 120.

    A. Hashim, A. Hadi, Synthesis and characterization of (MgO–Y2O3–CuO) nanocomposites for novel humidity sensor application. Sens. Lett. (2017). https://doi.org/10.1166/sl.2017.3900

    Article  Google Scholar 

  121. 121.

    O. Leenaerts, H. Peelaers, A. Nieves, B. Partoens, M. Peeters, J. Phys. Rev. B 82, 15–19 (2010)

    Google Scholar 

  122. 122.

    A. Hashim, Q. Hadi, Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J. Inorg. Organomet. Polym Mater. 28(4), 1394–1401 (2018). https://doi.org/10.1007/s10904-018-0837-4

    CAS  Article  Google Scholar 

  123. 123.

    A. Sazabo, N.S. Ostlund, Modem Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover Publication, Inc., Mineola, 1997)

    Google Scholar 

  124. 124.

    A. Hashim, I.R. Agool, K.J. Kadhim, Novel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications. J. Mater. Sci.: Mater. Electron. 29(12), 10369–10394 (2018). https://doi.org/10.1007/s10854-018-9095-z

    CAS  Article  Google Scholar 

  125. 125.

    A. Hashim, Q. Hadi, Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors. J. Mater. Sci.: Mater. Electron. 29, 11598–11604 (2018). https://doi.org/10.1007/s10854-018-9257-z

    CAS  Article  Google Scholar 

  126. 126.

    N.H. Al-Garah, F.L. Rashid, A. Hadi, A. Hashim, Synthesis and characterization of novel (organic–inorganic) nanofluids for antibacterial, antifungal and heat transfer applications. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1538

    Article  Google Scholar 

  127. 127.

    A.J. Kadham, D. Hassan, N. Mohammad, A. Hashim, Fabrication of (polymer blend-magnesium oxide) nanoparticle and studying their optical properties for optoelectronic applications. Bull. Electr. Eng. Inform. (2018). https://doi.org/10.11591/eei.v7i1.839

    Article  Google Scholar 

  128. 128.

    M.S. Mohammed, H.M. Abduljalil, Density functional theory investigation of the cyclobutane molecules. Br. J. Sci. 6, 1 (2012)

    Google Scholar 

  129. 129.

    H. Ahmed, A. Hashim, H.M. Abduljalil, Analysis of structural, electrical and electronic properties of (polymer nanocomposites/silicon carbide) for antibacterial application. Egypt. J. Chem. 62(4), 1167–1176 (2019). https://doi.org/10.21608/EJCHEM.2019.6241.1522

    Article  Google Scholar 

  130. 130.

    A. Hazim, H.M. Abduljalil, A. Hashim, Structural, electronic, optical properties and antibacterial application of novel (PMMA–Al2O3–Ag) nanocomposites for dental industries applications. Int. J. Emerg. Trends Eng. Res. (2019). https://doi.org/10.30534/ijeter/2019/04782019

    Article  Google Scholar 

  131. 131.

    D. Hassan, A. Hashim, Preparation and studying the structural and optical properties of (poly-methyl methacrylate-lead oxide) nanocomposites for bioenvironmental applications. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1537

    Article  Google Scholar 

  132. 132.

    A.H. Raheem, K.J. Al-Shejyri, E.D. Al-Bermany, Density functional theory calculations for methyl benzene molecules group. Br. J. Sci. 5, 2 (2012)

    Google Scholar 

  133. 133.

    A.H. Bekhouche, D. Rahou, A. Gueddim, M.K. Abdelhafidi, N. Bouarissa, Electron states, effective masses and transverse effective charge of InAs quantum dots. Opt. Quantum Electron. 50(8), 309 (2018)

    Google Scholar 

  134. 134.

    B.A. Gueddim, T. Eloud, N. Messikine, N. Bouarissa, Energy levels and optical properties of GaN spherical quantum dots. Superlattices Microstruct. 77, 124–133 (2014)

    Google Scholar 

  135. 135.

    C.T. Eloud, A. Gueddim, N. Bouarissa, Optoelectronic properties of nanosized GaAs. J. New Technol. Mater. 277, 1–7 (2014)

    Google Scholar 

  136. 136.

    D. Hassan, A. Hashim, Structural and optical properties of (polystyrene-copper oxide) nanocomposites for biological applications. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1533

    Article  Google Scholar 

  137. 137.

    H. Khalid, H. Al-Attiyah, A. Hashim, S.F. Obaid, Synthesis of new nanocomposites: carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol/lead oxide nanoparticles: structural and electrical properties as gamma ray sensor for bioenvironmental applications. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1526

    Article  Google Scholar 

  138. 138.

    A. Hashim, A. Jassim, Novel of biodegradable polymers-inorganic nanoparticles: structural, optical and electrical properties as humidity sensors and gamma radiation shielding for biological applications. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1518

    Article  Google Scholar 

  139. 139.

    A. Hazim, A. Hashim, H.M. Abduljalil, Novel (PMMA–ZrO2–Ag) nanocomposites: structural, electronic, optical properties as antibacterial for dental industries. Int. J. Emerg. Trends Eng. Res. (2019). https://doi.org/10.30534/ijeter/2019/01782019

    Article  Google Scholar 

  140. 140.

    H. Ahmed, H.M. Abduljalil, A. Hashim, Analysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors. Trans. Electri. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00100-2

    Article  Google Scholar 

  141. 141.

    G.M. Tarr, Inorganic Chemistry, 3rd edn. (John Dalton Publishers, Oxford, 1990)

    Google Scholar 

  142. 142.

    M. Muller, Fundamentals of Quantum Chemistry, Molecular Spectroscopy and Modern Electronic Structure Computational (Rose Hull Man Institute of Technology, Terre Haute, 2002)

    Google Scholar 

  143. 143.

    M. Torrent-Sucarrat, F. De Proft, P.W. Ayersc, P. Geerlingsa, On the applicability of local softness and hardness. Phys. Chem. Chem. Phys. 12, 1072–1080 (2009)

    Google Scholar 

  144. 144.

    Y.Z. Truhlar, Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. J. Phys. Chem. 109, 5656–5667 (2005)

    Google Scholar 

  145. 145.

    A. Hazim, H.M. Abduljalil, A. Hashim, Analysis of structural and electronic properties of novel (PMMA/Al2O3, PMMA/Al2O3–Ag, PMMA/ZrO2, PMMA/ZrO2–Ag, PMMA–Ag) nanocomposites for low cost electronics and optics applications. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00148-0

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hashim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hazim, A., Abduljalil, H.M. & Hashim, A. Structural, Spectroscopic, Electronic and Optical Properties of Novel Platinum Doped (PMMA/ZrO2) and (PMMA/Al2O3) Nanocomposites for Electronics Devices. Trans. Electr. Electron. Mater. 21, 550–563 (2020). https://doi.org/10.1007/s42341-020-00210-2

Download citation

Keywords

  • PMMA
  • Electronics
  • Pt
  • Zirconium oxide
  • Alumina
  • Optical properties