Skip to main content

Full Adder Circuit Design with Novel Lower Complexity XOR Gate in QCA Technology


Quantum-dot Cellular Automata (QCA) is a new technology for designing digital circuits in Nanoscale. This technology utilizes quantum dots rather than diodes and transistors. QCA supplies a new computation platform, where binary data can be represented by polarized cells, which can define by the electron’s configurations inside the cell. This paper explains QCA based combinational circuit design; such as half-adder and full-adder, by only one uniform layer of cells. The proposed design is accomplished using a novel XOR gate. The proposed XOR gate has a 50% speed improvement and 35% reduction in the number of cells needed over the best reported XOR. The results of QCADesigner software show that the proposed designs have less complexity and less power consumption than previous designs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. 1.

    G.Q. Zhang, A. Roosmalen, More than Moore: Creating High Value Micro/Nanoelectronics Systems (Springer, Berlin, 2009)

    Book  Google Scholar 

  2. 2.

    E. Alkaldy, A.H. Majeed, Bin Zainal, D. Bin Md Nor, Optimum multiplexer design in quantum-dot cellular automata. Indones. J. Electr. Eng. Comput. Sci. 17, 148–155 (2020)

    Article  Google Scholar 

  3. 3.

    B. Sen, M. Dutta, M. Goswami, B.K. Sikdar, Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J. 45, 1522–1532 (2014)

    Article  Google Scholar 

  4. 4.

    S. Sheikhfaal, K. Navi, S. Angizi, A.H. Navin, Designing high speed sequential circuits by quantum-dot cellular automata: memory cell and counter study. Quantum Matter 4, 190–197 (2015)

    Article  Google Scholar 

  5. 5.

    A.H. Majeed, E. Alkaldy, BinZainal, D. BinMdNor, Synchronous counter design using novel level sensitive T-FF in QCA technology. J. Low Power Electron. Appl. 9, 27 (2019)

    Article  Google Scholar 

  6. 6.

    A.H. Majeed, E. Alkaldy, M. Zainal, K. Navi, D. Nor, in Optimal Design of RAM Cell Using Novel 2:1 Multiplexer in QCA Technology, Circuit World (2019)

  7. 7.

    A. Majeed, E. AlKaldy, S. Albermany, An energy-efficient RAM cell based on novel majority gate in QCA technology. SN Appl. Sci. 1, 1–8 (2019)

    Article  Google Scholar 

  8. 8.

    K. Navi, R. Farazkish, S. Sayedsalehi, M. RahimiAzghadi, A new quantum-dot cellular automata full-adder. Microelectron. J. 41, 820–826 (2010)

    CAS  Article  Google Scholar 

  9. 9.

    M. Gladshtein, Design and simulation of novel adder/subtractors on quantum-dot cellular automata: radical departure from Boolean logic circuits. Microelectron. J. 44, 545–552 (2013)

    Article  Google Scholar 

  10. 10.

    R. Farazkish, F. Khodaparast, Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess. Microsyst. 39, 426–433 (2015)

    Article  Google Scholar 

  11. 11.

    S. Hashemi, K. Navi, A novel robust QCA full-adder. Procedia Mater. Sci. 11, 376–380 (2015)

    CAS  Article  Google Scholar 

  12. 12.

    A. Roohi, R.F. DeMara, N. Khoshavi, Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46, 531–542 (2015)

    Article  Google Scholar 

  13. 13.

    M. Mohammadi, M. Mohammadi, S. Gorgin, An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016)

    Article  Google Scholar 

  14. 14.

    T.N. Sasamal, A.K. Singh, A. Mohan, An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik Int. J. Light Electron Opt. 127, 8576–8591 (2016)

    Article  Google Scholar 

  15. 15.

    E. Taherkhani, M.H. Moaiyeri, S. Angizi, Design of an ultra-efficient reversible full adder-subtractor in quantum-dot cellular automata. Optik Int. J. Light Electron Opt. 142, 557–563 (2017)

    CAS  Article  Google Scholar 

  16. 16.

    S. Sayedsalehi, M.H. Moaiyeri, K. Navi, Novel efficient adder circuits for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 8, 1769–1775 (2011)

    CAS  Article  Google Scholar 

  17. 17.

    G.R.Y.T. Rajinder, S. Preeta, K. Anil, Performance evaluation of counter circuit for reversible ALU using QCA and VERILOG HDL. J. Eng. Sci. Technol. 14, 784–796 (2019)

    Google Scholar 

  18. 18.

    M.B. Khosroshahy, M.H. Moaiyeri, K. Navi, N. Bagherzadeh, An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata. Results Phys. 7, 3543–3551 (2017)

    Article  Google Scholar 

  19. 19.

    M.A. Tehrani, K. Navi, A. Kia-kojoori, Multi-output majority gate-based design optimization by using evolutionary algorithm. Swarm Evol. Comput. 10, 25–30 (2013)

    Article  Google Scholar 

  20. 20.

    R. Zhang, P. Gupta, N.K. Jha, Majority and minority network synthesis with application to QCA-, SET-, and TPL-based nanotechnologies. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 26, 1233–1245 (2007)

    Article  Google Scholar 

  21. 21.

    M.R. Bonyadi, S.M.R. Azghadi, N.M. Rad, K. Navi, E. Afjei, Logic optimization for majority gate-based nanoelectronic circuits based on genetic algorithm. Int. Conf. Electr. Eng. 2007, 1–5 (2007)

    Google Scholar 

  22. 22.

    M. Bagherian Khosroshahy, M. Hossein Moaiyeri, K. Navi, in Design and Evaluation of a 5-Input Majority Gate-Based Content-Addressable Memory Cell in Quantum-Dot Cellular Automata (2017)

  23. 23.

    F. Ahmad, An optimal design of QCA based 2 n:1/1:2 n multiplexer/demultiplexer and its efficient digital logic realization. Microprocess. Microsyst. 56, 64–75 (2018)

    Article  Google Scholar 

  24. 24.

    M.R. Azghadi, O. Kavehei, K. Navi, A novel design for quantum-dot cellular automata cells and full adders. J. Appl. Sci. 7, 3460–3468 (2007)

    CAS  Article  Google Scholar 

  25. 25.

    A.H. Majeed, E. AlKaldy, M.S.B. Zainal, D.B.M.D. Nor, A new 5-input majority gate without adjacent inputs crosstalk effect in QCA technology. Indones. J. Electr. Eng. Comput. Sci. 14, 1159–1164 (2019)

    Article  Google Scholar 

  26. 26.

    F. Ahmad, G.M. Bhat, P.Z. Ahmad, Novel adder circuits based on quantum-dot cellular automata (QCA). Circ. Syst. 05, 142–152 (2014)

    Article  Google Scholar 

  27. 27.

    P.Z. Ahmad, S.M.K. Quadri, F. Ahmad, A.N. Bahar, G.M. Wani, S.M. Tantary, A novel reversible logic gate and its systematic approach to implement cost-efficient arithmetic logic circuits using QCA. Data Brief 15, 701–708 (2017)

    Article  Google Scholar 

  28. 28.

    A.N. Bahar, M.S. Uddin, M. Abdullah-Al-Shafi, M.M.R. Bhuiyan, K. Ahmed, Designing efficient QCA even parity generator circuits with power dissipation analysis. Alex. Eng. J. (2017)

  29. 29.

    M.R. Beigh, M. Mustafa, F. Ahmad, Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA). Circuits Syst. 04, 147–156 (2013)

    Article  Google Scholar 

  30. 30.

    P.Z. Ahmad, F. Ahmad, H.A. Khan, A new F-shaped XOR gate and its implementations as novel adder circuits based quantum-dot cellular Automata (QCA). IOSR J. Comput. Eng. (IOSR-JCE) 16, 201 (2014)

    Google Scholar 

  31. 31.

    S. Angizi, E. Alkaldy, N. Bagherzadeh, K. Navi, Novel robust single layer wire crossing approach for exclusive OR sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10, 259–271 (2014)

    Article  Google Scholar 

  32. 32.

    A.M. Chabi, S. Sayedsalehi, S. Angizi, K. Navi, Efficient QCA exclusive-or and multiplexer circuits based on a nanoelectronic-compatible designing approach. Int. Sch. Res. Not. 2014, 463967 (2014)

    Google Scholar 

  33. 33.

    M.G. Waje, P.K. Dakhole, Design and simulation of new XOR gate and code converters using Quantum Dot Cellular Automata with reduced number of wire crossings, in 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014], pp. 1245–1250 (2014)

  34. 34.

    D. Ajitha, K.V. Ramanaiah, V. Sumalatha, An efficient design of XOR gate and its applications using QCA, i-manager’s. J. Electron. Eng. 5, 22–29 (2015)

    Google Scholar 

  35. 35.

    A.N. Bahar, S. Waheed, N. Hossain, M. Asaduzzaman, A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis, Alex. Eng. J. (2017)

  36. 36.

    A.M. Chabi, A. Roohi, R.F. DeMara, S. Angizi, K. Navi, H. Khademolhosseini, Cost-efficient QCA reversible combinational circuits based on a new reversible gate, in 2015 18th CSI International Symposium on Computer Architecture and Digital Systems (CADS), pp. 1–6 (2015)

  37. 37.

    M. Kianpour, R. Sabbaghi-Nadooshan, K. Navi, A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80, 1404–1414 (2014)

    Article  Google Scholar 

  38. 38.

    M. Poorhosseini, A.R. Hejazi, A fault-tolerant and efficient XOR structure for modular design of complex QCA circuits. J. Circ. Syst. Comput. 27, 1850115 (2018)

    Article  Google Scholar 

  39. 39.

    S. Sheikhfaal, S. Angizi, S. Sarmadi, M. HosseinMoaiyeri, S. Sayedsalehi, Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46, 462–471 (2015)

    Article  Google Scholar 

  40. 40.

    T.N. Sasamal, A.K. Singh, U. Ghanekar, Design and analysis of ultra-low power QCA parity generator circuit, in Advances in Power Systems and Energy Management: ETAEERE-2016, ed. by A. Garg, A.K. Bhoi, P. Sanjeevikumar, K.K. Kamani (Springer, Singapore, 2018), pp. 347–354

    Chapter  Google Scholar 

  41. 41.

    G. Singh, R.K. Sarin, B. Raj, A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis. J. Comput. Electron. 15, 455–465 (2016)

    Article  Google Scholar 

  42. 42.

    E. Alkaldy, K. Navi, Reliability study of single stage multi-input majority function for QCA. Int. J. Comput. Appl. 83, 2 (2013)

    Google Scholar 

  43. 43.

    M. Sarvaghad-Moghaddam, A.A. Orouji, New symmetric and planar designs of reversible full-adders/subtractors in quantum-dot cellular automata, in CoRR, abs/1803.11016,/2018

  44. 44.

    D. De, J.C. Das, Design of novel carry save adder using quantum dot-cellular automata. J. Comput. Sci. 22, 54–68 (2017)

    Article  Google Scholar 

  45. 45.

    P. Kumari, A. Sharma, A. Singh, Implementation of adder circuit using quantum-dot cellular automata-based logic gates, in Intelligent Communication, Control and Devices, Singapore, pp. 173–185 (2018)

  46. 46.

    K. Walus, T.J. Dysart, G.A. Jullien, R.A. Budiman, QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3, 26–31 (2004)

    Article  Google Scholar 

  47. 47.

    V.C. Teja, S. Polisetti, S. Kasavajjala, QCA based multiplexing of 16 arithmetic; logical subsystems-A paradigm for nano computing, in 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 758–763 (2008)

  48. 48.

    S.K. Lakshmi, G. Athisha, Efficient design of logical structures and functions using nanotechnology based quantum dot cellular automata design. Int. Comput. Appl. 3, 35–42 (2010)

    Google Scholar 

  49. 49.

    A. Shahidinejad, A. Selamat, Design of first adder/subtractor using quantum-dot cellular automata. Adv. Mater. Res. 403–408, 3392–3397 (2011)

    Article  Google Scholar 

  50. 50.

    H.S. Jagarlamudi, M. Saha, P.K. Jagarlamudi, Quantum dot cellular automata based effective design of combinational and sequential logical structures. World Acad. Sci. Eng. Technol. 5, 1523–1529 (2011)

    Google Scholar 

  51. 51.

    M. Mustafa, M.R. Beigh, Design and implementation of quantum cellular automata based novel parity generator and checker circuits with minimum complexity and cell count. Indian J. Pure Appl. Phys. 51, 60–66 (2013)

    CAS  Google Scholar 

  52. 52.

    M.G. Waje, P.K. Dakhole, Design and implementation of 4-bit arithmetic logic unit using quantum dot cellular automata, in 2013 3rd IEEE International Advance Computing Conference (IACC), pp. 1022–1029 (2013)

  53. 53.

    M. Goswami, B. Kumar, H. Tibrewal, S. Mazumdar, Efficient realization of digital logic circuit using QCA multiplexer, in 2014 2nd International Conference on Business and Information Management (ICBIM), pp. 165–170 (2014)

  54. 54.

    S. Santra, U. Roy, Design and implementation of quantum cellular automata based novel adder circuits. Int. J. Comput. Electr. Autom. Control Inf. Eng. 8, 168–173 (2014)

    Google Scholar 

  55. 55.

    S. Santra, U. Roy, Design and optimization of parity generator and parity checker based on quantum-dot cellular automata. Eng. Technol. Int. J. Comput. Inf. Syst. Control Eng. 8, 491–497 (2014)

    Google Scholar 

  56. 56.

    M. Kianpour, R. Sabbaghi-Nadooshan, Novel design of n-bit controllable inverter by quantum-dot cellular automata. Int. J. Nanosci. Nanotechnol. 10, 117–126 (2014)

    Google Scholar 

  57. 57.

    S.-H. Shin, J.-C. Jeon, K.-Y. Yoo, Design of wire-crossing technique based on difference of cell state in quantum-dot cellular automata. Int. J. Control Autom. 7, 153–164 (2014)

    Article  Google Scholar 

  58. 58.

    M.T. Niemier, P.M. Kogge, Designing Digital Systems in Quantum Cellular Automata (Notre Dame, Paris, 2004)

    Google Scholar 

  59. 59.

    S. Hashemi, R. Farazkish, K. Navi, New quantum dot cellular automata cell arrangements. J. Comput. Theor. Nanosci. 10, 798–809 (2013)

    CAS  Article  Google Scholar 

  60. 60.

    A.M. Chabi, A. Roohi, H. Khademolhosseini, S. Sheikhfaal, S. Angizi, K. Navi et al., Towards ultra-efficient QCA reversible circuits. Microprocess. Microsyst. 49, 127–138 (2017)

    Article  Google Scholar 

  61. 61.

    S.K. Lakshmi, G. Athisha, Design and analysis of adders using nanotechnology based quantum dot cellular automata. J. Comput. Sci. 7, 1072–1079 (2011)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ali H. Majeed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Majeed, A.H., Zainal, M.S.B., Alkaldy, E. et al. Full Adder Circuit Design with Novel Lower Complexity XOR Gate in QCA Technology. Trans. Electr. Electron. Mater. 21, 198–207 (2020).

Download citation


  • Nanotechnology
  • Quantum-dot cellular automata
  • XOR gate
  • Half adder
  • Full adder