Skip to main content
Log in

Thermally Efficient Coplanar Architecture of Microheater and Inter-digitated Electrodes for Nanolayered Metal Oxide Based Hydrogen Gas Sensor

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

A Correction to this article was published on 13 January 2021

This article has been updated

Abstract

Chemoresistive hydrogen gas sensor with zinc oxide (ZnO) thin film as a sensing layer has been studied with a coplanar integrated architecture of microheater and interdigitated electrode (IDE). ZnO thin films are fabricated via a chemical route. The present study is based on the use of a coplanar microheater with IDE’s fabricated for the hydrogen sensor. Further, the effect of the integrated architecture over sensing properties of the sensor has been studied. The sensing response of the sensor with film thickness of 150 nm at an operating temperature of 160 °C comes out to be 10.97. The prime aim of the study is to present coplanar integrated architecture of microheater and IDE’sfor a ZnO based hydrogen sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 13 January 2021

    In the original publication of the article, the first author name was published incorrectly. The correct author name is given in this correction.

References

  1. K.-N. Lee, D.-S. Lee, S.-W. Jung, Y.-H. Jang, Y.-K. Kim, W.-K. Seong, A high-temperature MEMS heater using suspended silicon structures. J. Micromech. Microeng. 19, 115011 (2009)

    Article  Google Scholar 

  2. P. Bhattacharyya, P. Basu, B. Mondal, H. Saha, A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing methane. Microelectron. Reliab. 48, 1772–1779 (2008)

    Article  CAS  Google Scholar 

  3. J.-K. Choi, I.-S. Hwang, S.-J. Kim, J.-S. Park, S.-S. Park, U. Jeong et al., Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sens. Actuators B Chem. 150, 191–199 (2010)

    Article  CAS  Google Scholar 

  4. M.A. Andio, P.N. Browning, P.A. Morris, S.A. Akbar, Comparison of gas sensor performance of SnO2 nano-structures on microhotplate platforms. Sens. Actuators B Chem. 165, 13–18 (2012)

    Article  CAS  Google Scholar 

  5. K.-Y. Choi, J.-S. Park, K.-B. Park, H.J. Kim, H.-D. Park, S.-D. Kim, Low power micro-gas sensors using mixed SnO2 nanoparticles and MWCNTs to detect NO2, NH3, and xylene gases for ubiquitous sensor network applications. Sens. Actuators B Chem. 150, 65–72 (2010)

    Article  CAS  Google Scholar 

  6. B. Jiang, P. Muralt, P. Heeb, A.J. Santis-Alvarez, M. Nabavi, D. Poulikakos et al., A micro heater platform with fluid channels for testing micro-solid oxide fuel cell components. Sens. Actuators B Chem. 175, 218–224 (2012)

    Article  CAS  Google Scholar 

  7. S. Zhang, L. Zhang, High sensitive formaldehyde gas sensing devices based on nickel oxide nanowires and nanodisks. J. Nanoelectron. Optoelectron. 12, 1355–1359 (2017)

    Article  CAS  Google Scholar 

  8. I. Bársony, P. Fürjes, M. Ádám, C. Dücső, Z. Vı́zváry, J. Zettner et al., Thermal response of microfilament heaters in gas sensing. Sens. Actuators B Chem. 103, 442–447 (2004)

    Article  Google Scholar 

  9. T. Bechtold, E.B. Rudnyi, J.G. Korvink, Dynamic electro-thermal simulation of microsystems—a review. J. Micromech. Microeng. 15, R17 (2005)

    Article  CAS  Google Scholar 

  10. D.C. Meier, S. Semancik, B. Button, E. Strelcov, A. Kolmakov, Coupling nanowire chemiresistors with MEMS microhotplate gas sensing platforms. Appl. Phys. Lett. 91, 063118 (2007)

    Article  Google Scholar 

  11. M. Deshwal, A. Arora, Enhanced acetone detection using Au doped ZnO thin film sensor. J. Mater. Sci. Mater. Electron. 29, 15315–15320 (2018)

    Article  CAS  Google Scholar 

  12. H. Pandya, S. Chandra, A. Vyas, Integration of ZnO nanostructures with MEMS for ethanol sensor. Sens. Actuators B Chem. 161, 923–928 (2012)

    Article  CAS  Google Scholar 

  13. O. Lupan, G. Chai, L. Chow, Novel hydrogen gas sensor based on single ZnO nanorod. Microelectron. Eng. 85, 2220–2225 (2008)

    Article  CAS  Google Scholar 

  14. B.J. Lin, Deep UV lithography. J. Vac. Sci. Technol. 12, 1317–1320 (1975)

    Article  CAS  Google Scholar 

  15. P. Köllensperger, W. Karl, M. Ahmad, W. Pike, M. Green, Patterning of platinum (Pt) thin films by chemical wet etching in Aqua Regia. J. Micromech. Microeng. 22, 067001 (2012)

    Article  Google Scholar 

  16. T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, Study of ZnO sol–gel films: effect of annealing. Mater. Lett. 64, 1147–1149 (2010)

    Article  CAS  Google Scholar 

  17. D. Bao, H. Gu, A. Kuang, Sol–gel-derived c-axis oriented ZnO thin films. Thin Solid Films 312, 37–39 (1998)

    Article  CAS  Google Scholar 

  18. A. Arora, P. George, V. Dwivedi, V. Gupta, Post-deposition treatment behaviour of zinc oxide thin films in hydrogen peroxide solution. Mater. Sci. Technol. 25, 591–594 (2009)

    Article  CAS  Google Scholar 

  19. A. Arora, A. Arora, P. George, V. Dwivedi, V. Gupta, Effect of different post deposition annealing treatments on properties of zinc oxide thin films. Sens. Transducers 117, 92 (2010)

    CAS  Google Scholar 

  20. P. Tyagi, S. Sharma, M. Tomar, F. Singh, V. Gupta, Swift heavy ion irradiated SnO2 thin film sensor for efficient detection of SO2 gas. Nucl. Instrum. Methods Phys. Res. Sect. B 379, 219–223 (2016)

    Article  CAS  Google Scholar 

  21. B. Mondal, S. Maity, S. Das, D. Panda, H. Saha, A. Kundu, Fabrication and packaging of MEMS based platform for hydrogen sensor using ZnO–SnO2 composites. Microsyst. Technol. 22, 2757–2764 (2016)

    Article  CAS  Google Scholar 

  22. S. Ilican, Y. Caglar, M. Caglar, Preparation and characterization of ZnO thin films deposited by sol–gel spin coating method. J. Optoelectron. Adv. Mater. 10, 2578–2583 (2008)

    CAS  Google Scholar 

  23. M. Islam, J. Podder, Optical properties of ZnO nano fiber thin films grown by spray pyrolysis of zinc acetate precursor. Cryst. Res. Technol. 44, 286–292 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Physics and Astrophysics, University of Delhi and Thapar Institute of Engineering and Technolgy, Patiala for providing the characterization equipment and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Deshwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mann, S., Garg, A. & Deshwal, M. Thermally Efficient Coplanar Architecture of Microheater and Inter-digitated Electrodes for Nanolayered Metal Oxide Based Hydrogen Gas Sensor. Trans. Electr. Electron. Mater. 20, 542–547 (2019). https://doi.org/10.1007/s42341-019-00147-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-019-00147-1

Keywords

Navigation