Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Effect of Preparation Routes on the Crystal Purity and Properties of \(\hbox {BiFeO}_{3}\) Nanoparticles

  • 69 Accesses

  • 1 Citations

Abstract

Sol–gel as a chemical solution deposition technique is compatible with functional device fabrication technology. Single-phase bismuth ferrite (\(\hbox {BiFeO}_3\)) mutiferroic with its multi-functionality has extensively been studied for a variety of prospective novel device applications. However, the synthesis of \(\hbox {BiFeO}_3\) is confronted with a challenge to produce pure state without any secondary phase. Scarcity of unified process parameters impede justification of best synthesis techniques. In this work, sol–gel methods with and without auto-combustion reactions were used to synthesize bismuth ferrite (\(\hbox {BiFeO}_3\)) nanoparticles. Different techniques UV–Vis–NIR spectroscopy, XRD, EDS, and SEM were used to investigate the effect of preparation routes on the crystal purity and properties of prepared samples. Synthesized nanoparticles were calcined at temperature between 400 and 800\(^{\circ }\)C and an optimal calcination temperature was found to be 600\(^{\circ }\)C. Band-gap was determined by UV–Vis–NIR spectroscopy and found to vary from 1.93 to 2.07 eV. X-ray diffraction (XRD) has confirmed single phase rhombohedral crystal structure with R3c symmetry. Avg crystallite size was found to be higher (40–68 nm) in auto-combustion reaction compared to that of 23–42 nm obtained in sol–gel method without auto-combustion reaction. The band-gap energy was found to reduce with decreasing crystallite size (above the critical size of 10 nm) following Brus’s effective mass model. Induced strain was found to exhibit an inverse relation with crystallite size and displayed substantial reduction in auto-combustion reaction route. The microstructural features were investigated by field emission scanning electronic microscopy and avg particle size was shown to vary from 107 to 197 nm depending on adopted synthesis route. A low reaction temperature (70\(^{\circ }\)C–80\(^{\circ }\)C) without auto-combustion and calcination temperature at \(600^{\circ }\)C were found to be optimal conditions for the preparation of low impurity un-doped bismuth ferrite nanaoparticles.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162(1), 317–338 (1994)

  2. 2.

    C.N.R. Rao, C.R. Serrao, New routes to multiferroics. J. Mater. Chem. 17(47), 4931–4938 (2007)

  3. 3.

    N.A. Hill, Why are there so few magnetic ferroelectrics? (2000)

  4. 4.

    C.T. Munoz, J.P. Rivera, A. Bezinges, A. Monnier, H. Schmid, Measurement of the quadratic magnetoelectric effect on single crystalline \(\hbox {BiFeO}_{3}\). Jpn. J. Appl. Phys. 24(S2), 1051 (1985)

  5. 5.

    ChSRL Prasad, G. Sreenivasulu, S.R. Kiran, M. Balasubramanian, B.S. Murty, Electrical and magnetic properties of nanocrystalline \(\hbox {BiFeO}_{3}\) prepared by high energy ball milling and microwave sintering. J. Nanosci. Nanotechnol. 11(5), 4097–4102 (2011)

  6. 6.

    J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, \(\hbox {BiFeO}_{3}\): a review on synthesis, doping and crystal structure. Integr Ferroelectr. 126(1), 47–59 (2011)

  7. 7.

    K.L. Yadav, Aliovalent-ion and magnetic field induced phase transition in multiferroic \(BiFe_{1- x}Ti_xO_3\) system. J. Nanosci. Nanotechnol. 11(3), 2682–2686 (2011)

  8. 8.

    M. Valant, A.K. Axelsson, N. Alford, Peculiarities of a solid-state synthesis of multiferroic polycrystalline \(\hbox {BiFeO}_{3}\). Chem. Mater. 19(22), 5431–5436 (2007)

  9. 9.

    J.K. Kim, S.S. Kim, W.J. Kim, Sol–gel synthesis and properties of multiferroic \(\hbox {BiFeO}_{3}\). Mater. Lett. 59(29–30), 4006–4009 (2005)

  10. 10.

    I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, Effects of Ga–Cr substitution on structural and magnetic properties of hexaferrite (\(BaFe_{12}O_{19}\)) synthesized by sol–gel auto-combustion route. J. Alloy. Compd. 547, 118–125 (2013)

  11. 11.

    I. Szafraniak, M. Połomska, B. Hilczer, A. Pietraszko, Characterization of \(\hbox {BiFeO}_{3}\) nanopowder obtained by mechanochemical synthesis. J. Eur. Ceram. Soc. 27(13–15), 4399–4402 (2007)

  12. 12.

    E.A.V. Ferri, I.A. Santos, E. Radovanovic, R. Bonzanini, E.M. Girotto, Chemical characterization of \(\hbox {BiFeO}_{3}\) obtained by pechini method. J. Braz. Chem. Soc. 19(6), 1153–1157 (2008)

  13. 13.

    W. Luo, D. Wang, X. Peng, F. Wang, Microwave synthesis and phase transitions in nanoscale \(\hbox {BiFeO}_{3}\). J. Sol–Gel. Sci. Technol. 51(1), 53–57 (2009)

  14. 14.

    E.C. Aguiar, M.A. Ramirez, F. Moura, J.A. Varela, E. Longo, A.Z. Simoes, Low-temperature synthesis of nanosized bismuthferrite by the soft chemical method. Ceram. Int. 39, 13–20 (2013)

  15. 15.

    J.L.O. Quinonez, D. Diaz, I.Z. Dube, H.A. Santamaria, O.I. Betancourt, P.S. Jacinto, and title = N. N. Etzana

  16. 16.

    G. Clarke, A. Rogov, S. McCarthy, L. Bonacina, Y. Gunko, C. Galez, R.L. Dantec, Y. Volkov, Y. Mugnier, A.P. Mello, Preparation from a revisited wet chemical route of phase-pure, monocrystalline and SHG-efficient \(\hbox {BiFeO}_{3}\) nanoparticles for harmonic bio-imaging. Sci. Rep. 8, 10473 (2018)

  17. 17.

    P. Suresh, S. Srinath, Effect of synthesis route on the multiferroic properties of \(\hbox {BiFeO}_{3}\): a comparative study between solid state and solgel methods. J. Alloy. Compd. 649, 843–850 (2015)

  18. 18.

    M. Popa, D. Crespo, J.M.C. Moreno, S. Preda, V. Fruth, Synthesis and structural characterization of single-phase \(\hbox {BiFeO}_{3}\) powders from a polymeric precursor. J. Am. Ceram. Soc. 90, 2723–2727 (2007)

  19. 19.

    K.C. Hegde, M.S. Patil, T. Rattan, S.T. Aruna, Chemistry of nanocrystalline oxide materials. Combustion synthesis, properties and applications. British Library Cataloguing-in-Publication Data p. 182 (2008)

  20. 20.

    M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Ferroelectricity in a pure \(\hbox {BiFeO}_{3}\) ceramic. Appl. Phys. Lett. 76, 2764–2766 (2000)

  21. 21.

    S.M. Selbach, M. Einarsrud, T. Grande, On the thermodynamic stability of \(\hbox {BiFeO}_{3}\). Chem. Mater. 21, 169–173 (2009)

  22. 22.

    G.R. George, J. Silva, R. Castañeda, D. Lardizábal, O.A. Graeve, L. Fuentes, A.R. Rojas, Modifications in the rhombohedral degree of distortion and magnetic properties of Ba-doped \(\hbox {BiFeO}_{3}\) as a function of synthesis methodology. Mater. Chem. Phys. 146(1–2), 73–81 (2014)

  23. 23.

    M.M. Rhaman, M.A. Matin, M.N. Hossain, F.A. Mozahid, M.A. Hakim, M.H. Rizvi, M.F. Islam, Bandgap tuning of Sm and Co co-doped BFO nanoparticles for photovoltaic application. J. Electron. Mater. 47, 6954–58 (2018)

  24. 24.

    M.M. Rhaman, M.A. Matin, M.N. Hossain, F.A. Mozahid, M.A. Hakim, M.F. Islam, Bandgap engineering of cobalt-doped bismuth ferrite nanoparticles for photovoltaic applications. Bull. Mater. Sci. 42, 190 (2019)

  25. 25.

    P.S.V. Mocherla, C. Karthik, R. Ubic, M.S.R. Rao, C. Sudakar, Tunable bandgap in \(BiFeO_3\) nanoparticles: the role of microstrain and oxygen defects. Appl. Phys. Lett. 103, 022910 (2013)

  26. 26.

    J. Kaczkowski, M.P. Michalska, A. Jezierski, Electronic structure of \(\hbox {BiFeO}_{3}\) in different crystal phases. Acta Phys. Pol. A 127, 266–268 (2015)

  27. 27.

    H. Lin, C.P. Huang, W. Li, C. Ni, S.I. Shah, Y.H. Tseng, Size dependency of nanocrystalline \(\text{ TiO}_2\) on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B 68, 1–11 (2006)

  28. 28.

    M. Hasan, M.A. Basith, M.A. Zubair, M.S. Hossain, R. Mahbub, M.A. Hakim, M.F. Islam, Saturation magnetization and band gap tuning in \(\text{ BiFeO}_3\) nanoparticles via co-substitution of Gd and Mn. J. Alloy. Compd. 687, 701–706 (2016)

  29. 29.

    I.S. Elashmawi, A.M. Abdelghany, N.A. Hakeem, Quantum confinement effect of CdS nanoparticles dispersed within PVP/PVA nanocomposites. J. Mater. Sci.: Mater. Electron. 24, 2956–61 (2013)

  30. 30.

    C.S. Tu, C.S. Chen, P.Y. Chen, H.H. Wei, V.H. Schmidta, C.Y. Lin, J. Anthoniappen, J.M. Lee, Enhanced photovoltaic effects in A-site samarium doped \(\hbox {BiFeO}_{3}\) ceramics: the roles of domain structure and electronic state. J. Eur. Ceram. Soc. 36, 1149–57 (2016)

  31. 31.

    K.H. Santosh, B.M. Quinn, A.J. Bard, Electrochemistry of CdS nanoparticles: a correlation between optical and electrochemical band gaps. J. Am. Chem. Soc. 123, 8860–8861 (2001)

  32. 32.

    K. Koci, L. Obalova, L. Matjova, D. Placha, Z. Lacny, J. Jirkovsky, O. Solcova, Effect of \(\text{ TiO}_2\) particle size on the photocatalytic reduction of \(\text{ CO}_2\). Appl. Catal. B 89, 494–502 (2009)

  33. 33.

    L. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)

  34. 34.

    L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory. J. Chem. Phys. 90, 2555–2560 (1986)

  35. 35.

    M. Hasan, M.F. Islam, R. Mahbub, M.S. Hossain, M.A. Hakim, A soft chemical route to the synthesis of \(\hbox {BiFeO}_{3}\) nanoparticles with enhanced magnetization. Mater. Res. Bull. 73, 179–186 (2016)

  36. 36.

    R. Das, K. Mandal, Magnetic, ferroelectric and magnetoelectric properties of Ba-doped \(\hbox {BiFeO}_{3}\). J. Magn. Magn. Mater. 324, 1913–1918 (2012)

  37. 37.

    S.M. Selbach, T. Tybell, M.A. Einarsrud, T. Grande, Size-dependent properties of multiferroic \(\hbox {BiFeO}_{3}\) nanoparticles. Chem. Mater. 19, 6478–6484 (2007)

  38. 38.

    T. Yan, Z.G. Shen, W.W. Zhang, J.F. Chen, Size dependence on the ferroelectric transition of nanosized \(\text{ BaTiO}_3\) particles. Mater. Chem. Phys. 98, 450–455 (2006)

Download references

Acknowledgements

We highly acknowledge the support given by the Department of Glass and Ceramic Engineering (GCE), BUET while pursuing this research.

Author information

Correspondence to M. A. Matin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matin, M.A., Rhaman, M.M., Hossain, M.N. et al. Effect of Preparation Routes on the Crystal Purity and Properties of \(\hbox {BiFeO}_{3}\) Nanoparticles. Trans. Electr. Electron. Mater. 20, 485–493 (2019). https://doi.org/10.1007/s42341-019-00140-8

Download citation

Keywords

  • \(\hbox {BiFeO}_3\)
  • Chemical synthesis
  • Multiferroics
  • Nanoparticle
  • Sol–gel
  • X-ray diffraction