Skip to main content
Log in

Numerical Study of Strained GaAs1−xNx/GaAs Quantum-Well Laser

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The optical gain of a strained GaAs1−xNx/GaAs quantum-well laser has been calculated for a nitrogen concentration of 0.03 corresponding to a so-called dilute alloy. The effect of the density of carriers along with that of the quantum well width on the optical gain of the considered laser have been investigated and analyzed. Besides, the emitted wavelength has been also derived as a function of the quantum well width. Numerical results clearly show that by increasing the density of carriers and the quantum well width the optical gain is increased. The emitted wavelength is also enhanced as the quantum well width is augmented. The laser diode being studied here is shown to emit in the infrared-red region of the electromagnetic spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.G. Spruytte, MBE Growth of Nitride-Arsenides for Long-Wavelength Optoelectronics, PhD Thesis, Stanford University, 2001

  2. H. Riechert, A. Ramakrishnan, G. Steinle, Development of InGaAsN-based 1.3 µm VCSELs. Semicond. Sci. Technol. 17, 892–897 (2002). https://doi.org/10.1088/0268-1242/17/8/318

    Article  Google Scholar 

  3. A. Mereuta, G. Saint-Girons, S. Bouchoule, I. Sagnes, F. Alexandre, G. Le Roux, J. Decobert, A. Ougazzaden, (InGa)(NAs)/GaAs structures emitting in 1–1.6 µm wavelength range. Opt. Mater. 17, 185–188 (2001). https://doi.org/10.1016/s0925-3467(01)00079-9

    Article  Google Scholar 

  4. A. Hasse, K. Volz, A.K. Schaper, J. Koch, F. Hohnsdorf, W. Stolz, TEM investigations of (Galn)(NAs)/GaAs multi-quantum wells grown by MOVPE. Crst. Res. Technol. (2000). https://doi.org/10.1002/1521-4079(200007)35:6/7%3c787:aid-crat787%3e3.0.co;2-s

    Google Scholar 

  5. M. Fischer, M. Reinhardt, A. Forchel, GaInAsN/GaAs laser diodes operating at 1.52 µm. Electron. Lett. 36, 1208–1209 (2000). https://doi.org/10.1049/el:20000870

    Article  Google Scholar 

  6. I. Buyanova, W. Chen, Physics and Applications of Dilute Nitrides (CRC Press, New York, 2004)

    Book  Google Scholar 

  7. I. Vurgaftman, J.R. Meyer, Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675 (2003). https://doi.org/10.1063/1.1600519

    Article  Google Scholar 

  8. A. Gueddim, R. Zerdoum, N. Bouarissa, Dependence of electronic properties on nitrogen concentration in GaAs1−xNx dilute alloys. J. Phys. Chem. Solids 67(8), 1618–1622 (2004). https://doi.org/10.1016/j.jpcs.2006.02.007

    Article  Google Scholar 

  9. A. Gueddim, R. Zerdoum, N. Bouarissa, Alloy composition and optoelectronic properties of dilute GaSb1−xNx by pseudo-potential calculations. Physica B Condens. Matter 389(2), 335–342 (2006). https://doi.org/10.1016/j.physb.2006.07.008

    Article  Google Scholar 

  10. A. Gueddim, N. Bouarissa, Electronic structure and optical properties of dilute InAs1−xNx: pseudopotential calculations. Phys. Scr. 80(1), 015701 (2009). https://doi.org/10.1088/0031-8949/80/01/015701

    Article  Google Scholar 

  11. A. Gueddim, R. Zerdoum, N. Bouarissa, Effect of nitrogen concentration on mechanical properties of GaAs1−xNx dilute alloys. Mater. Sci. Eng. B 131(1–3), 111–115 (2006). https://doi.org/10.1016/j.mseb.2006.03.032

    Article  Google Scholar 

  12. J.N. Baillargeon, K.Y. Cheng, G.E. Hofler, P.J. Pearah, K.C. Hsieh, Luminescence quenching and the formation of the GaP1−xNx alloy in GaP with increasing nitrogen content. Appl. Phys. Lett. 60, 2540 (1992). https://doi.org/10.1063/1.106906

    Article  Google Scholar 

  13. X. Liu, S.G. Bishop, J.N. Baillargeon, K.Y. Cheng, Band gap bowing in GaP1−xNx alloys. Appl. Phys. Lett. 63, 208 (1993). https://doi.org/10.1063/1.110371

    Article  Google Scholar 

  14. W.G. Bi, C.W. Tu, N incorporation in InP and band gap bowing of InNxP1−x. Appl. Phys. 80, 1934 (1996). https://doi.org/10.1063/1.362945

    Article  Google Scholar 

  15. K.M. Yu, W. Walukiewicz, J. Wu, J.W. Beeman, J.W. Ager, E.E. Haller, W. Shan, H.P. Xin, C.W. Tu, Synthesis of III–Nx–V1−x thin films by N ion implantation. Appl. Phys. Lett. 78, 1077 (2001). https://doi.org/10.1557/PROC-647O13.3/R8.3

    Article  Google Scholar 

  16. T. Makimoto, H. Saito, T. Nishida, N. Kobayashi, Excitonic luminescence and absorption in dilute GaAs1−xNx alloy (x < 0.3%). Appl. Phys. Lett. 70, 2984 (1997). https://doi.org/10.1063/1.118764

    Article  Google Scholar 

  17. K. Uesugi, N. Morooka, I. Suemume, Reexamination of N composition dependence of coherently grown GaNAs band gap energy with high-resolution x-ray diffraction mapping measurements. Appl. Phys. Lett. 74, 1254 (1999). https://doi.org/10.1063/1.123516

    Article  Google Scholar 

  18. S. Ben Bouzid, F. Bousbih, R. Chtourou, J.C. Harmand, P. Voisin, Effect of nitrogen in the electronic structure of GaAsN and GaInAs(N) compounds grown by molecular beam epitaxy. Mater. Sci. Eng. B 112, 64 (2004). https://doi.org/10.1016/j.mseb.2004.06.003

    Article  Google Scholar 

  19. H. Shimizu, K. Kumada, S. Uchiyama, A. Kasukawa, Extremely large differential gain of 1.26 bum GaInNAsSb-SQW ridge lasers. Electron. Lett. 37, 28–30 (2001). https://doi.org/10.1049/el:20010021

    Article  Google Scholar 

  20. N. Tansu, J.Y. Yeh, L.J. Mawst, Low-threshold 1317-nm InGaAsN quantum-well lasers with GaAsN barriers. Appl. Phys. Lett. 83, 2512–2514 (2003). https://doi.org/10.1063/1.1613998

    Article  Google Scholar 

  21. E.L. Albuquerque, U.L. Fulcoa, M.S. Vasconcelos, P.W. Mauriz, Optical gain spectra of unstrained graded GaAs/AlxGa1−xAs quantum well laser. Phys. Lett. A 377, 582–586 (2013). https://doi.org/10.1016/j.physleta.2012.12.025

    Article  Google Scholar 

  22. S.L. Chuang, Physics of Optoelectronic Devices, 2nd edn. (Wiley, New York, 2009)

    Google Scholar 

  23. M.A. Parker, Physics of optoelectronics (CRC Press, New York, 2004)

    Google Scholar 

  24. E.P. O’Reilly, K.C. Heasman, A.R. Adams, G.P. Witchlow, Calculations of the threshold current and temperature sensitivity of Al(GaIn)As strained quantum well laser operating at 1.55 µm. Superlattices Microstruct. 3, 99 (1987). https://doi.org/10.1016/0749-6036(87)90038-3

    Article  Google Scholar 

  25. A. Aissat, S. Nacer, F. Ykhlef, J.P. Vilcot, Modeling of GaInAsNSb/GaAs quantum well properties for near-infrared lasers. Mater. Sci. Semicond. Process. 16, 1936 (2013). https://doi.org/10.1016/j.mssp.2013.07.021

    Article  Google Scholar 

  26. A. Aissat, S. Nacer, M. Bensebti, J.P. Vilcot, Low sensitivity to temperature compressive strained structure quantum well laser GaInAsN/GaAs. Microelectron. J. 40, 10 (2009). https://doi.org/10.1016/j.mejo.2008.09.005

    Article  Google Scholar 

  27. M. Debbichi, A. Ben Fredj, M. Said, J. Lazzari, Y. Cuminal, P. Christol, Notrogen effect on optical gain and radiative current density for mid-infrared InAs(N)/GaSb/InAs(N) quantum well laser. Physica E 40, 489 (2008). https://doi.org/10.1016/j.physe.2007.07.003

    Article  Google Scholar 

  28. M. Debbichi, A. Ben Fredj, A. Bhouri, M. Said, J. Lazzari, Y. Cuminal, A. Joullié, P. Christol, Optical gain calculation of mid-infrared InAsN/GaSb quantum-well laser for tunable absorption spectroscopy applications. Mater. Sci. Eng. C 28, 751 (2008). https://doi.org/10.1016/j.msec.2007

    Article  Google Scholar 

  29. M. Lahoual, A. Gueddim, N. Bouarissa, A. Attaf, Modeling of ZnSe/Zn1−xMgxSe quantum well laser properties. Optik 127, 3676–3679 (2016). https://doi.org/10.1016/j.ijleo.2016.01.021

    Article  Google Scholar 

  30. A. Gueddim, N. Bouarissa, Theoretical investigation of the conduction and valence band offsets of GaAs1−xNx/GaAs1−yNy heterointerfaces. Appl. Surf. Sci. 253(17), 7336–7341 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gueddim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahoual, M., Gueddim, A. & Bouarissa, N. Numerical Study of Strained GaAs1−xNx/GaAs Quantum-Well Laser. Trans. Electr. Electron. Mater. 20, 344–349 (2019). https://doi.org/10.1007/s42341-019-00123-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-019-00123-9

Keywords

Navigation