Structural, Morphological and Electrical Impedance Spectroscopy of Bi2MnCdO6 Double Perovskite Electronic Material

  • A. Tripathy
  • S. N. Das
  • S. BhuyanEmail author
  • R. N. P. Choudhary
Regular Paper


In this communication, the systematic studies of structural (basic crystal data, microstructure), and electrical (dielectric constant and loss, impedance, modulus, conductivity, etc.) properties of the double perovskite material Bi2MnCdO6 have been reported. The compound has been synthesized by means of a high temperature route (a solid state reaction method). From the X-ray diffraction structural investigation, a stable phase of the orthorhombic crystal system has been recognized. The microstructure obtained from the scanning electron microscope shows uniform, dense and compact grain distribution. Detailed investigation of dielectric as well as electrical parameters of the fabricated compound through a broad frequency range (i.e. 1 kHz–1 MHz) and temperature (i.e., 25 °C to 300 °C) have provided many interesting data and results in order to understand its ferroelectric and electrical relaxation mechanism. It has been experimentally affirm that this material (Bi2MnCdO6) has more advantages like high relative dielectric constant and low tangent loss over Bi2MnCoO6 material.


Double perovskite Dielectric Electronic material 



  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nat. Lond. 442, 759 (2006)CrossRefGoogle Scholar
  2. 2.
    Y. Lan, X. Feng, X. Zhang, Y. Shen, D. Wang, Phys. Lett. A 380, 2962 (2016)CrossRefGoogle Scholar
  3. 3.
    A.K. Paul, M. Reehuis, V. Ksenofontov, B.H. Yan, A. Hoser, D.M. Többens, P.M. Abdala, P. Adler, M. Jansen, C. Felser, Phys. Rev. Lett. 111, 1 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Green, A.H. Baillie, H.J. Snaith, Nat. Photonics 8, 506 (2014)CrossRefGoogle Scholar
  5. 5.
    G. Volonakis, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger, H.J. Snaith, F. Giustino, J. Phys. Chem. Lett. 7, 1254 (2016)CrossRefGoogle Scholar
  6. 6.
    A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, J. Am. Chem. Soc. 138, 2138 (2016)CrossRefGoogle Scholar
  7. 7.
    L. Luo, L. Zhou, X. Zou, Q. Zheng, D. Lin, J. Mater. Sci. Mater. Electron. 25, 4896–4901 (2014)CrossRefGoogle Scholar
  8. 8.
    M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000)CrossRefGoogle Scholar
  9. 9.
    S.N. Das, S.K. Pradhan, D.P. Kar, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 9375 (2018)CrossRefGoogle Scholar
  10. 10.
    A. Tripathy, S.N. Das, S.K. Pradhan, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 4770 (2018)CrossRefGoogle Scholar
  11. 11.
    H.J. Feng, F.M. Liu, Phys. Lett. A 372, 1904 (2008)CrossRefGoogle Scholar
  12. 12.
    Y.Q. Lin, X.M. Chen, J. Am. Ceram. Soc. 94(3), 782–787 (2011). DPS CrossRefGoogle Scholar
  13. 13.
    M. Ullah, S.A. Khan, G. Murtaza, R. Khenata, N. Ullah, J. Magn. Magn. Mater. 377, 197–203 (2015). DPS CrossRefGoogle Scholar
  14. 14.
    O.E. Rhazouani, A. Slassi, Y. Ziat, A. Benyoussef, Phys. Lett. A 381, 1177 (2017)CrossRefGoogle Scholar
  15. 15.
    C.L. Bull, D. Gleeson, K.S. Knight, J. Phys. Condens. Matter 15, 4927 (2003)CrossRefGoogle Scholar
  16. 16.
    M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, M. Takano, J. Am. Chem. Soc. 127, 8889 (2005)CrossRefGoogle Scholar
  17. 17.
    T. Siritanon, N. Chathirat, C. Masingboon, T. Yamwong, S. Maensiri, J. Mater. Sci. Mater. Electron. 25, 1361–1868 (2014)CrossRefGoogle Scholar
  18. 18.
    E. Wu, J. Appl. Cryst. 22, 506 (1989)CrossRefGoogle Scholar
  19. 19.
    B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1978)Google Scholar
  20. 20.
    B. Asbani, A. Lahmar, M. Amjoud, J.L. Dellis, Y. Gagou, D. Mezzane, M.E. Marssi, Superlattices Microstruct. 71, 162 (2014)CrossRefGoogle Scholar
  21. 21.
    R. Das, R.N.P. Choudhary, Solid State Sci. 87, 1–8 (2019)CrossRefGoogle Scholar
  22. 22.
    S.K. Pradhan, S.N. Das, S. Halder, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 9627 (2007)CrossRefGoogle Scholar
  23. 23.
    K.K. Mishra, A.T. Satya, A. Bharathi, V. Sivasubramanian, V.R.K. Murthy, A.K. Arora, J. Appl. Phys. 110, 123529 (2011)CrossRefGoogle Scholar
  24. 24.
    S.N. Das, A. Pattanaik, S. Kadambini, S. Pradhan, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 27, 10099 (2016)CrossRefGoogle Scholar
  25. 25.
    S.N. Das, S.K. Pradhan, S. Bhuyan, S. Sahoo, R.N.P. Choudhary, M.N. Goswami, J. Electron. Mater. 47, 843 (2017)CrossRefGoogle Scholar
  26. 26.
    D.K. Pradhan, B. Behera, P.R. Das, J. Mater. Sci. Mater. Electron. 23, 779 (2012)CrossRefGoogle Scholar
  27. 27.
    W. Liu, G. Tan, G. Dong, X. Xue, H. Ren, A. Xia, Superlattices Microstruct. 72, 186 (2014)CrossRefGoogle Scholar
  28. 28.
    V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, J. Am. Ceram. Soc. 55, 492 (1972)CrossRefGoogle Scholar
  29. 29.
    H. Jain, C.H. Hsieh, J. Solids Non Cryst. 172, 1408 (1994)CrossRefGoogle Scholar
  30. 30.
    D.P. Almond, A.R. West, Solid State Ion. 11, 57 (1983)CrossRefGoogle Scholar
  31. 31.
    S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Phys. Stat. Sol. (a) 201, 588 (2004)CrossRefGoogle Scholar
  32. 32.
    S.N. Das, S. Pradhan, S. Bhuyan, R.N.P. Choudhary, P. Das, J. Electron. Mater. 46, 1637 (2016)CrossRefGoogle Scholar
  33. 33.
    C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006)CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, J.P. Zhou, Q. Liu, S. Zhang, C.Y. Deng, Ceram. Int. 40, 5853 (2014)CrossRefGoogle Scholar
  35. 35.
    R. Mukherjee, A. Dutta, T.P. Sinha, J. Electron. Mater. 45, 846 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringSiksha ‘O’ Anusandhan (Deemed to be University)BhubaneswarIndia

Personalised recommendations