Skip to main content
Log in

Aging and Degradation of Organic Solar Cells Using QUV Accelerated-Weathering Tester

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, we have reported some investigation on the QUV aging of organic solar cells (OSCs). The use of QUV chamber leads to study the effect of cyclic aging on the electrical properties namely PCE, Jsc, FF and Voc under variation of UV irradiation, temperature, humidity and dark. Samples of commercial encapsulated cells supplied by Infinity OPV manufacturer were subjected to 45 cycles (1080 h) of aging. Each cycle of 24 h contains 8 h of illumination with UVA-340 lamp under 50 °C, followed by 4 h of spray (raining) and condensation (humidity generation) at 50 °C, and finished by 12 h of dark. The effect of three different UV irradiation doses (0.83 W/m2, 1.2 W/m2 and 1.3 W/m2) was studied. The degradation process of the OSCs under cyclic aging fits with the earlier finding in the literature and is occurred in two phases with deferent aging rates. The first phase is characterized by the fast decrease of overall electrical properties at the beginning of aging and is due the synergistic effects of rapid variation in the temperature, light and humidity. The second phase is more stable and all the curves reach some saturation. This stabilized phase is the consequence of no bleaching of the semiconductor layer over time. Time constants and constant of degradation were deduced from the first exponential and linear fits of the studied properties. Furthermore, it has been found that the OSCs lose more than 60% of their initial performances, and for some properties like PCE the decrease reaches 80%. This drastic drop of the OSCs performances, associated to the formation of bubbles, indicates that samples undergo very hard bulk degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Liu et al., ACS Appl. Mater. Interfaces 7(8), 4928 (2015). https://doi.org/10.1021/am509047g

    Article  CAS  Google Scholar 

  2. M. Manceau, D. Angmo, M. Jørgensen, F.C. Krebs, Org. Electron. 12(4), 566 (2011). https://doi.org/10.1016/j.orgel.2011.01.009

    Article  CAS  Google Scholar 

  3. G. Dennler, M.C. Scharber, C.J. Brabec, Adv. Mater. 21(13), 1323 (2009). https://doi.org/10.1002/adma.200801283

    Article  CAS  Google Scholar 

  4. E. Hleli et al., Synth. Metals 243, 8 (2018). https://doi.org/10.1016/j.synthmet.2018.05.011

    Article  CAS  Google Scholar 

  5. Z. Yang et al., J. Phys. Chem. C 122(5), 3058 (2018). https://doi.org/10.1021/acs.jpcc.7b11188

    Article  Google Scholar 

  6. L.J.A. Koster, V.D. Mihailetchi, P.W.M. Blom, Appl. Phys. Lett. 88(9), 4 (2006). https://doi.org/10.1063/1.2181635

    Article  CAS  Google Scholar 

  7. S. Li et al., Adv. Mater. 28(42), 9423 (2016). https://doi.org/10.1002/adma.201602776

    Article  CAS  Google Scholar 

  8. M. Jørgensen, K. Norrman, F.C. Krebs, Sol. Energy Mater. Sol. Cells 92(7), 686 (2008). https://doi.org/10.1016/j.solmat.2008.01.005

    Article  CAS  Google Scholar 

  9. M.O. Reese et al., Sol. Energy Mater. Sol. Cells 95(5), 1253 (2011). https://doi.org/10.1016/j.solmat.2011.01.036

    Article  CAS  Google Scholar 

  10. M. Corazza, F.C. Krebs, S.A. Gevorgyan, Sol. Energy Mater. Sol. Cells 130, 99 (2014). https://doi.org/10.1016/j.solmat.2014.06.031

    Article  CAS  Google Scholar 

  11. J. Kettle, V. Stoichkov, D. Kumar, M. Corazza, S.A. Gevorgyan, F.C. Krebs, Sol. Energy Mater. Sol. Cells 167, 53 (2017). https://doi.org/10.1016/j.solmat.2017.04.005

    Article  CAS  Google Scholar 

  12. N. Bristow, J. Kettle, J. Renew. Sustain. Energy 7(1), 013111 (2015). https://doi.org/10.1063/1.4906915

    Article  CAS  Google Scholar 

  13. D. Angmo, F.C. Krebs, Energy Technol. 3, 774 (2015). https://doi.org/10.1002/ente.201500086

    Article  CAS  Google Scholar 

  14. M. Hermenau, M. Riede, K. Leo, S.A. Gevorgyan, F.C. Krebs, K. Norrman, Sol. Energy Mater. Sol. Cells 95, 1268 (2011). https://doi.org/10.1016/j.solmat.2011.01.001

    Article  CAS  Google Scholar 

  15. V. Turkovic et al., J. Appl. Phys. D 49(12), 125604 (2016). https://doi.org/10.1088/0022-3727/49/12/125604

    Article  CAS  Google Scholar 

  16. H. Neugebauer, C. Brabec, J.C. Hummelen, N.S. Sariciftci, Sol. Energy Mater. Sol. Cells 61, 35 (2000). https://doi.org/10.1016/S0927-0248(99)00094-X

    Article  CAS  Google Scholar 

  17. C.J. Brabec, J.A. Hauch, P. Schilinsky, C. Waldauf, MRS Bull. 30, 50 (2005). https://doi.org/10.1557/mrs2005.10

    Article  Google Scholar 

  18. V.I. Madogni, B. Kounouhéwa, A. Akpo, M. Agbomahéna, S.A. Hounkpatin, C.N. Awanou, Chem. Phys. Lett. 640, 201 (2015). https://doi.org/10.1016/j.cplett.2015.09.023

    Article  CAS  Google Scholar 

  19. D. Angmo et al., Adv. Eng. Mater. 16, 976 (2014). https://doi.org/10.1002/adem.201400002

    Article  CAS  Google Scholar 

  20. K. Harafuji, H. Sato, T. Matsuura, Y. Omoto, T. Kaji, M. Hiramoto, Jpn. J. Appl. Phys. 53(12), 122303 (2014). https://doi.org/10.7567/JJAP.53.122303

    Article  Google Scholar 

  21. H. Sato, W.S. Binti Azmi, Y. Onaru, K. Harafuji, Org. Electron. 37, 386 (2016). https://doi.org/10.1016/j.orgel.2016.07.011

    Article  CAS  Google Scholar 

  22. M. Tessarolo et al., Sol. Energy Mater. Sol. Cells 141, 240 (2015). https://doi.org/10.1016/j.solmat.2015.05.041

    Article  CAS  Google Scholar 

  23. N. Rolston, A.D. Printz, S.R. Dupont, E. Voroshazi, R.H. Dauskardt, Sol. Energy Mater. Sol. Cells 170, 239 (2017). https://doi.org/10.1016/j.solmat.2017.06.002

    Article  CAS  Google Scholar 

  24. T. Kuwabara, C. Tamai, Y. Omura, T. Yamaguchi, T. Taima, K. Takahashi, Org. Electron. 14(2), 649 (2013). https://doi.org/10.1016/j.orgel.2012.11.013

    Article  CAS  Google Scholar 

  25. I. Visoly-Fisher et al., Sol. Energy Mater. Sol. Cells. 134, 99 (2015). https://doi.org/10.1016/j.solmat.2014.11.033

    Article  CAS  Google Scholar 

  26. T. Tromholt, A. Manor, E.A. Katz, F.C. Krebs, Nanotechnology 22, 225401–225406 (2011). https://doi.org/10.1088/0957-4484/22/22/225401

    Article  CAS  Google Scholar 

  27. T. Tromholt, E.A. Katz, B. Hirsch, A. Vossier, F.C. Krebs, Appl. Phys. Lett. 96, 1 (2010). https://doi.org/10.1063/1.3298742

    Article  CAS  Google Scholar 

  28. A. Manor, E.A. Katz, T. Tromholt, F.C. Krebs, Adv. Energy Mater. 1, 836 (2011). https://doi.org/10.1002/aenm.201100227

    Article  CAS  Google Scholar 

  29. A. Manor, E.A. Katz, R. Andriessen, Y. Galagan, Appl. Phys. Lett. 99, 1 (2011). https://doi.org/10.1063/1.3656276

    Article  CAS  Google Scholar 

  30. G154-06, Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials. https://www.astm.org/Standards/G154 Accessed 18 April 2018

  31. G.A. dos Reis Benatto et al., Nanoscale 8, 318 (2016). https://doi.org/10.1039/C5NR07426F

    Article  Google Scholar 

  32. V.S. Balderrama et al., Sol. Energy Mater. Sol. Cells 125, 155 (2014). https://doi.org/10.1016/j.solmat.2014.02.035

    Article  CAS  Google Scholar 

  33. H. Bin Yang, Q.L. Song, C. Gong, C. Ming, Sol. Energy Mater. Sol. Cells 94, 846 (2010). https://doi.org/10.1016/j.solmat.2010.01.006

    Article  CAS  Google Scholar 

  34. S.A. Gevorgyan, M. Jørgensen, F.C. Krebs, Sol. Energy Mater. Sol. Cells 92(7), 736 (2008). https://doi.org/10.1016/j.solmat.2008.02.008

    Article  CAS  Google Scholar 

  35. S. Schuller, P. Schilinsky, J. Hauch, C.J. Barbec, Appl. Phys. A Mater. Sci. Process. 79(1), 37 (2004). https://doi.org/10.1007/s00339-003-2499-4

    Article  CAS  Google Scholar 

  36. B. Conings et al., Appl. Phys. Lett. 96(16), 163301 (2010). https://doi.org/10.1063/1.3391669

    Article  CAS  Google Scholar 

  37. T. Wang et al., Adv. Funct. Mater. 22(7), 1399 (2012). https://doi.org/10.1002/adfm.201102510

    Article  CAS  Google Scholar 

  38. I. Cardinaletti, S. Bertho, J.D. Haen, D. Vanderzande, J. Photo, Energy 4(1), 1 (2014). https://doi.org/10.1117/1.JPE.4.040997

    Article  CAS  Google Scholar 

  39. A. Guerrero et al., Adv. Energy Mater. 5(7), 1401997 (2015). https://doi.org/10.1002/aenm.201401997

    Article  CAS  Google Scholar 

  40. T.S. Ripolles, A. Guerrero, G. Garcia-belmonte, Appl. Phys. Lett. 103(24), 243306 (2013). https://doi.org/10.1063/1.4841475

    Article  CAS  Google Scholar 

  41. K. Vandewal, S. Himmelberger, A. Salleo, Macromolecules 46(16), 6379 (2013). https://doi.org/10.1021/ma400924b

    Article  CAS  Google Scholar 

  42. J.A. Hauch, P. Schilinsky, S.A. Choulis, R. Childers, M. Biele, C.J. Brabec, Sol. Energy Mater. Sol. Cells 92(7), 727 (2008). https://doi.org/10.1016/j.solmat.2008.01.004

    Article  CAS  Google Scholar 

  43. M. Corazza, N. Rolston, R.H. Dauskardt, M.J. Beliatis, F.C. Krebs, S.A. Gevorgyan, Adv. Energy. Mater. 6(11), 1501927 (2016). https://doi.org/10.1002/aenm.201501927

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larbi Boukezzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djeddaoui, N., Boukezzi, L. & Bessissa, L. Aging and Degradation of Organic Solar Cells Using QUV Accelerated-Weathering Tester. Trans. Electr. Electron. Mater. 20, 189–197 (2019). https://doi.org/10.1007/s42341-019-00103-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-019-00103-z

Keywords

Navigation