Advertisement

Enhanced Output Performance of Nanogenerator Based on Composite of Poly Vinyl Fluoride (PVDF) and Zn:Al Layered-Double Hydroxides (LDHs) Nanosheets

  • Thi Minh Tuoi Nguyen
  • Swathi Ippili
  • Ji-Ho Eom
  • Venkatraju Jella
  • Dang Van Tran
  • Soon-Gil Yoon
Regular Paper
  • 27 Downloads

Abstract

We report a high output performance of flexible nanogenerator (NG) based on the composite of PVDF and Zn:Al layered double hydroxide (LDH) nanosheets. The Zn:Al LDH nanosheets were synthesized via the most facile process by dipping the sputtered Al-doped ZnO (AZO)/Ag/AZO multilayer films into deionized water at room temperature. Here, sputtered AZO/Ag/AZO multilayer was served as a bottom electrode of the energy harvesting device as well as for the growth of Zn:Al LDH nanosheets. The PVDF based NG exhibited an output voltage of ~ 1.71 V and a current density of ~ 0.19 μA cm−2 after poling. While poled-PVDF/Zn:Al LDH composite based NGs exhibited an enhancement in the output performance with an output voltage and current density of ~ 6.24 V and ~ 0.655 μA cm−2, respectively. This simple facile approach can be feasible for the development of large-scale, flexible and an eco-friendly energy harvester that can be widely implemented in self-powered biomedical applications.

Keywords

PVDF Zn:Al LDH nanosheets Spin coating Nanogenerator 

Notes

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. NRF-2013R1A4A1069528).

Supplementary material

42341_2018_75_MOESM1_ESM.docx (88 kb)
Supplementary material 1 (DOCX 88 kb)

Supplementary material 2 (AVI 15201 kb)

References

  1. 1.
    M.R.S. Shaikh, S.B. Waghmare, S.S. Labade, P.V. Fuke, A. Tekale, A review paper on electricity generation form Solar Energy. IJRASET 5, 1884–1889 (2017)CrossRefGoogle Scholar
  2. 2.
    S. Chakraborty, A. Sinha, S. Dutta, N. Biswas, A review paper of wind energy, in AREST-11 (2011), pp. 202–206Google Scholar
  3. 3.
    ChN Kumar, Energy collection via piezoelectricity. J. Phys: Conf. Ser. 662, 012031 (2015)Google Scholar
  4. 4.
    L.W. Zhong, W. Xudong, S. Jinhui, L. Jin, G. Yifan, Piezoelectric nanogenerators for self-powered nanodevices. IEE CS 7, 49–55 (2008)Google Scholar
  5. 5.
    M. Mishra, A. Roy, S. Dash, S. Mukherjee, Flexible nano-GFO/PVDF piezoelectric-polymer nanocomposite films for mechanical energy harvesting. IOP Conf. Ser. Mater. Sci 338, 012026 (2018)CrossRefGoogle Scholar
  6. 6.
    G. Darusz, Piezoelectric generators: materials and structures. Pomiary automatyka robotyka R. 17, 123–129 (2013)Google Scholar
  7. 7.
    H.S. Huidrom, S. Simrjit, K. Neeraj, Enhanced β-phase in PVDF polymer nanocomposite and its application for nanogenerator. Polym. Adv. Technol. 29, 143–150 (2018)CrossRefGoogle Scholar
  8. 8.
    A.A.A. Ahmed, Z.A. Talib, M.Z. Bin Hussein, Thermal, optical and dielectric properties of Zn–Al layered double hydroxide. Appl. Clay Sci. 191, 271–278 (2012)Google Scholar
  9. 9.
    G. Xiaoxiao, Z. Fazhi, G.E. David, D. Xue, Layered double hydroxide films: synthesis, properties and application. Chem. Commun. 46, 5197–5210 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Xiaoning, H. Wenbin, Z. Shujun, Flexoelectric nano-generator: materials, structure and devices. Nano Energy 2, 1079–1092 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Amin, M. Akbar, S. Amin, Hydrophobicity of silicon rubber used for outdoor insulation. Rev. Adv. Mater. Sci. 16, 10–26 (2007)Google Scholar
  12. 12.
    B. Nagendra, K. Mohan, E.B. Gowd, Polypropylene/layered double hydroxide (LDH) nanocomposites: influence of LDH particle size on the crystallization behavior of polypropylene. ACS Appl. Mater. Interface 7, 12399–12410 (2015)CrossRefGoogle Scholar
  13. 13.
    F.Z. Mahjoubi, A. Khalidi, M. Abdennouri, N. Barka, Zn–Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulphate ions: synthesis, characterisation and dye removal properties. J. Taibah Univ. Sci. 11, 90–100 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Szabados, Bús Cs, M. Ádok-Sipiczki, Z. Kónya, Á. Kukovecz, P. Sipos, I. Pálinkó, Ultrasound-enhanced milling in the synthesis of phase phase-pure, highly crystalline ZnAl-layered double hydroxide of low Zn(II) content. Particuology 27, 29–33 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Zhu, D. Wang, X. Yang, S. Liu, D. Liu, J. Liu, H. Xiao, X. Hao, J. Liu, Investigation of the dye-sensitized solar cell designed by a series of mixed metal oxides based on ZnAl-layered double hydroxide. Appl. Phys. A Mater. 123, 641 (2017)CrossRefGoogle Scholar
  16. 16.
    H.L. Shen, H. Zhang, L.F. Lu, F. Jiang, C. Yang, Preparation and properties of AZO thin films on different substrates. Prog. Nat. Sci. 20, 44–48 (2010)CrossRefGoogle Scholar
  17. 17.
    W.A. Yee, M. Kotaki, Y. Liu, X. Lu, Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers. Polymer 48, 512–521 (2007)CrossRefGoogle Scholar
  18. 18.
    L. Yu, P. Cebe, Crystal polymorphism in electrospun composite nanofibers of poly(vinylidene fluoride) with nanoclay. Polymer 50, 2133–2141 (2009)CrossRefGoogle Scholar
  19. 19.
    P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Lee, Y. Lim, Generating power enhancement of flexible PVDF generator by incorporation of CNTs and surface treatment of PEDOT:PSS electrodes. Macromol. Mater. Eng. 303, 1700588 (2018)CrossRefGoogle Scholar
  21. 21.
    O.D. Jayakumar, E.H. Abdelhamid, V. Kotari, B.P. Mandal, R. Rao, V.M. Jagannath Naik, R. Naik, A.K. Tyagi, Fabrication of flexible and self-standing inorganic–organic three phase magneto-dielectric PVDF based multiferroic nanocomposite films through a small loading of graphene oxide (GO) and Fe3O4 nanoparticles. Dalton Trans. 44, 15872–15881 (2015)CrossRefGoogle Scholar
  22. 22.
    C.K. Jeong, I. Kim, K.I. Park, M.H. Oh, H. Paik, G.T. Hwang, K. No, Y.S. Nam, K.J. Lee, Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano 7, 11016–11025 (2013)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringChungnam National UniversityDaejeonRepublic of Korea

Personalised recommendations