Advertisement

Major Effects on Non-ohmic Properties and Aging Stress Behavior of ZPCCD Semiconducting Varistors with Er2O3 Doping Changes

  • Choon-W. Nahm
Regular Paper
  • 6 Downloads

Abstract

A stress behavior of non-ohmic properties for ZPCCD (ZnO–Pr1.83–CoO–Cr2O3–Dy2O3) varistors was investigated for different amounts of the doped Er2O3. With the amount of the doped Er2O3 increased, the density of the sintered pellet decreased from 5.56 to 5.43 g/cm3, and the average grain size decreased from 16.4 to 6.8 μm. With the amount of the doped Er2O3 increased, the breakdown field increased from 1676 to 3939 V/cm, and the non-ohmic coefficient exhibited the fluctuation between 41.4 and 68.1. The varistors doped with 0.25 mol% Er2O3 of exhibited the strongest electrical stability; variation rates for the breakdown field and for the non-ohmic coefficient were 0.1 and − 8.3%, respectively, after application of a strong stress (0.95 EB/150 °C/24 h).

Keywords

Non-ohmic properties Aging stress behavior ZnO Varistors 

Notes

Acknowledgements

This Work was support by Dong-eui University Foundation Grant (2017).

References

  1. 1.
    L.M. Levinson, H.R. Pilipp, Am. Ceram. Soc. Bull. 65, 639 (1986)Google Scholar
  2. 2.
    T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990)CrossRefGoogle Scholar
  3. 3.
    Y.-S. Lee, T.-Y. Tseng, J. Am. Ceram. Soc. 75, 1636 (1992)CrossRefGoogle Scholar
  4. 4.
    K. Mukae, Am. Ceram. Soc. Bull. 66, 1329 (1987)Google Scholar
  5. 5.
    K. Mukae, K. Tsuda, S. Shiga, IEEE Trans. Power Deliv. 3, 591 (1988)CrossRefGoogle Scholar
  6. 6.
    A.B. Alles, R. Puskas, G. Callahan, V.L. Burdick, J. Am. Ceram. Soc. 76, 2098 (1993)CrossRefGoogle Scholar
  7. 7.
    Y.S. Lee, K.S. Liao, T.Y. Tseng, J. Am. Ceram. Soc. 79, 2379 (1996)CrossRefGoogle Scholar
  8. 8.
    C.-W. Nahm, Mater. Lett. 47, 182 (2001)CrossRefGoogle Scholar
  9. 9.
    Z. Peng, X. Fu, Y. Zang, Z. Fu, C. Wang, L. Qi, H. Miao, J. Alloy. Compd. 497, 304 (2010)CrossRefGoogle Scholar
  10. 10.
    Z. Peng, X. Fu, Y. Zang, Z. Fu, C. Wang, L. Qi, H. Miao, J. Alloy. Compd. 508, 494 (2010)CrossRefGoogle Scholar
  11. 11.
    C.-W. Nahm, B.C. Shin, Mater. Lett. 57, 1322 (2003)CrossRefGoogle Scholar
  12. 12.
    C.-W. Nahm, Solid State Commun. 127, 389 (2003)CrossRefGoogle Scholar
  13. 13.
    C.-W. Nahm, J. Mater. Sci. 41, 7272 (2006)CrossRefGoogle Scholar
  14. 14.
    C.-W. Nahm, Mater. Sci. Eng. B 136, 134 (2007)CrossRefGoogle Scholar
  15. 15.
    C.-W. Nahm, J. Mater. Sci. 43, 2857 (2008)CrossRefGoogle Scholar
  16. 16.
    C.-W. Nahm, Ceram. Int. 37, 3049 (2011)CrossRefGoogle Scholar
  17. 17.
    C.-W. Nahm, Ceram. Int. 40, 2477 (2014)CrossRefGoogle Scholar
  18. 18.
    J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972)CrossRefGoogle Scholar
  19. 19.
    J. Fan, R. Freer, J. Am. Ceram. Soc. 77, 2663 (1994)CrossRefGoogle Scholar
  20. 20.
    K. Mukae, K. Tsuda, I. Nagasawa, Jpn. J. Appl. Phys. 16, 1361 (1977)CrossRefGoogle Scholar
  21. 21.
    T.K. Gupta, W.G. Carlson, J. Mater. Sci. 20, 3487 (1985)CrossRefGoogle Scholar
  22. 22.
    T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990)CrossRefGoogle Scholar
  23. 23.
    G.D. Mahan, J. Appl. Phys. 54, 3825 (1983)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2018

Authors and Affiliations

  1. 1.Semiconductor Ceramics Laboratory, Department of Electrical EngineeringDongeui UniversityBusanKorea

Personalised recommendations