Skip to main content
Log in

Bipolar Charge Transport Model Optimized to Simulate the Space Charge Build-Up Within the Bi-Dielectric System

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, finite element method correlated with boundary conditions has been used to solve the Poisson’s equation. Splitting method, solving the continuity equation in two-time step, with and without term source associated with new Schottky injection application, however, Runge–Kutta method with a Gaussian filter calculated the distribution of all charges whether mobile or trapped accumulated on the interface. Moreover, these equations are solved in order to simulate the space charge behavior accumulated in the bi-dielectric system with different nature of electrodes. This model takes into account trapping, detrapping, recombination as well as the diffusion. Moreover, this model is optimized in order to fit experimental data by considering the surface charge at electrodes. Simulation results showed that the injection mechanism based on both the electric field and the properties of either metal-electrode or the dielectric. Furthermore, the polarity of the interfacial charge trapped on the dielectric interface depends on both the dielectrics permittivities and the nature of the electrodes. Thereby, surface charge at electrode improving the performance of this model to simulate the other charge accumulated into the bulk of the bi-dielectric system rather the interfacial charge trapped on the dielectric interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.T.N. Vu et al., in Proceeding of the 2013 IEEE International Conference on Solid Dielectrics (ICSD), Bologna, 2013, pp. 413–416. https://doi.org/10.1109/ICSD.2013.6619749

  2. J. Li, B.X. Du, H. Xu, I.E.E.E. Trans, Dielectr. Electr. Insul. 24, 1331 (2017)

    Article  Google Scholar 

  3. Y. Yin, J. Gu, Q. Wang, Z. Li, Z. Wang, in Proceedings of the 2011 International Symposium on Electrical Insulating Materials, Kyoto, 2011, pp. 47–50. https://doi.org/10.1109/ISEIM.2011.6826299

  4. F. Roti, M. Ferhat, Appl. Phys. Lett. 104, 031605 (2014)

    Article  Google Scholar 

  5. C. Tang, G. Chen, M. Fu and R. Liao, in Proceeding of the 2009 IEEE 9th International Conference on the Properties and Applications of Dielectric Materials, Harbin, 2009, pp. 914–917. https://doi.org/10.1109/ICPADM.2009.5252245

  6. D. Mishra, N. Haque, A. Baral, S. Chakravorti, I.E.E.E. Trans, Dielectr. Electr. Insul. 24, 1665 (2017)

    Article  Google Scholar 

  7. T.T.N. Vu, G. Teyssedre, S.L. Roy, C. Laurent, Technologies 5, 27 (2017)

    Article  Google Scholar 

  8. B.Y.A. Dr and R.F. Pr, in Proceeding of the 2017 5th International Conference on Electrical Engineering–Boumerdes (ICEE-B), Boumerdes, 2017, pp. 1–6. https://doi.org/10.1109/ICEE-B.2017.8191995

  9. Y.A. Baadj, F. Rogti (2017) https://doi.org/10.22068/ijeee.13.2.135

  10. B. Hamed, R. Fatiha. (2015) http://dx.doi.org/10.4313/TEEM.2015.16.3.107

  11. W. Wang, D. Min, S. Li, IEEE Trans. Dielectr. Electr. Insul. 23, 564 (2016)

    Article  Google Scholar 

  12. F. Boufayed et al., in Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, 2004. ICSD 2004., 2004, pp. 562–566, vol. 2. https://doi.org/10.1109/ICSD.2004.1350493

  13. S. Chouikhi, I. Boukhris, E. Belgaroui, A. Kallel, J. Electrostat. 71, 14 (2013)

    Article  Google Scholar 

  14. S. Le Roy et al., in Proceeding of the 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2005, pp. 661–664. https://doi.org/10.1109/CEIDP.2005.1560769

  15. D. Fabiani et al., IEEE Electr. Insul. Mag. 23, 11 (2007)

    Article  Google Scholar 

  16. S. Le Roy, H. Miyake, Y. Tanaka, T. Takada, G. Teyssedre, C. Laurent, J. Phys. D. 38, 89 (2004)

    Article  Google Scholar 

  17. Z. Lv, J. Cao, X. Wang, H. Wang, K. Wu, L.A. Dissado, I.E.E.E. Trans, Dielectr. Electr. Insul. 22, 3186 (2015)

    Article  Google Scholar 

  18. F. Boufayed, G. Teyssèdrea, C. Laurent, J. Appl. Phys. 100, 104105 (2006)

    Article  Google Scholar 

  19. T.J. Lewis, in Proceedings of the 2001 IEEE 7th International Conference on, Eindhoven, 2001, pp. 223–227. https://doi.org/10.1109/ICSD.2001.955600

  20. M. Taleb, G. Teyssèdre, S. Le Roy, in Proceeding of the 2009 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Virginia Beach, VA, 2009, pp. 112–115. https://doi.org/10.1109/ceidp.2009.5377888

  21. A. Moyassari, M. Unge, M.S. Hedenqvist, U.W. Gedde, F. Nilsson, J. Chem. Phys. 146, 204901 (2017)

    Article  Google Scholar 

  22. G. Chen, T.Y.G. Tay, A.E. Davies, Y. Tanaka, T. Takada, I.E.E.E. Trans, Dielectr. Electr. Insul. 8, 867 (2001)

    Article  Google Scholar 

  23. D. Min, C. Yan, W. Wang, D. Xie, M. Fréchette and S. Li, in Proceeding of the 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO), Pittsburgh, PA, 2017, pp. 267–269. https://doi.org/10.1109/NANO.2017.8117403

  24. Qing Yang, Mengna Liu, Wenxia Sima, Yang Jin, J. Phys. D. 50, 465106 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Laboratory Research and Development Materials Semiconductors and Dielectrics, LEDMaSD, Faculty of Technology, University Amar Telidji, Laghouat-Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youcef Abdallah Baadj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baadj, Y.A., Boukhari, H. & Rogti, F. Bipolar Charge Transport Model Optimized to Simulate the Space Charge Build-Up Within the Bi-Dielectric System. Trans. Electr. Electron. Mater. 19, 356–364 (2018). https://doi.org/10.1007/s42341-018-0056-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-018-0056-2

Keywords

Navigation