Skip to main content
Log in

Recent Advances in the Determination of Optimal Active Layer Thickness for Bulk Heterojunction Organic Solar Cells

  • Review Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Organic solar cells have gathered much research interest in recent years because of their advantages like low-cost, flexibility and light-weight. This paper presents a first of its kind, critical review of the theoretical and experimental studies performed to determine the outcome of changing active layer thickness on the working of a bulk heterojunction organic solar cell. The functional principles of an organic solar cell along with its typical parameters are briefly outlined. This paper discusses the features of the active layer and response of these features to changing active layer thickness which determines the device performance. Subsequently we describe the changes occurring in the parameters of the solar cell, followed by a detailed account of the optimal thickness ranges for different bulk heterojunction solar cells. A concise description of the donor and acceptor material properties is also presented. In the last section, simulations performed by changing active layer thickness for two different active layer material combinations have been presented, wherein we used poly(3-hexylthiophene): P3HT as the electron donor and phenyl-C61-butyric acid methyl ester: PCBM as the electron acceptor for one cell and the other cell has poly(9,9-dioctylindenofluorene-co-benzothiadiazole): PIF8BT and N′-bis(1-ethylpropyl)-3,4,9,10-perylene tetracarboxy diimide: PDI as donor and acceptor respectively. The paper concludes with a brief discussion of the applicability of annealing process to improve the optimal active layer thickness ranges of organic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Kamble, N. Chide, S. Mhatre, S. Sukhdeve, in Proceedings of the IEEE International Conference on Green Computing, Communication and Conservation of Energy (ICGCE) (Chennai, India, 12–14 Dec 2013), p. 649

  2. M.M. Rhaman, M.A. Matin, in Proceedings of 2015 International Conference on Advances in Electrical Engineering (ICAEE) (Bangladesh 17–19 Dec 2015), p. 26

  3. J. Hou, X. Guo, in Organic Solar Cells, Green Energy and Technology, ed. by W.C.H. Choy (Springer, London, 2013), p. 17

    Chapter  Google Scholar 

  4. J.M. Nunzi, C R Phys. 3, 4 (2002)

    Article  Google Scholar 

  5. G. Li, R. Zhu, Y. Yang, Polym. Solar Cells Nat. Photon. 6, 3 (2012)

    Google Scholar 

  6. C.J. Brabec, Solar Energy Mater. Solar Cells 83, 273 (2004)

    Article  Google Scholar 

  7. G. Dennler, C. Lungenschmied, H. Neugebauer, N.S. Sariciftci, A. Labouret, J. Mater. Res. 20, 3224 (2005)

    Article  Google Scholar 

  8. H. Hoppe, N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004)

    Article  Google Scholar 

  9. D.S. Fung, W.C.H. Choy, in Organic Solar Cells, Green Energy and Technology, ed. by W.C.H. Choy (Springer, London, 2013), p. 1

    Google Scholar 

  10. H. Spanggaard, F.C. Krebs, Solar. Energy Mater. Solar Cells 83, 125 (2004)

    Article  Google Scholar 

  11. M.C. Scharber, N.S. Sariciftci, Prog. Polym. Sci. 38, 1929 (2013)

    Article  Google Scholar 

  12. Y. Liang, Y. Luping, Acc. Chem. Res. 43(9), 1227 (2010)

    Article  Google Scholar 

  13. Y.M. Nam, J. Huh, W.H. Jo, Solar Energy Mater. Solar Cells 94, 1118 (2010)

    Article  Google Scholar 

  14. S.V. Bavel, E. Sourty, G. With, K. Frolic, J. Loos, Macromolecules 42, 7396 (2009)

    Article  Google Scholar 

  15. H. Hoppe, N.S. Sariciftci, J. Mater. Chem. 16, 45 (2006)

    Article  Google Scholar 

  16. A.J. Moulé, J.B. Bonekamp, K. Meerholz, J. Appl. Phys. 100, 094503-1 (2006)

    Article  Google Scholar 

  17. M. Lenes, L.J.A. Koster, Appl. Phys. Lett. 88, 243502-1 (2006)

    Article  Google Scholar 

  18. L. Liu, G. Li, in Proceedings of the 11th IEEE International Conference on Nanotechnology (Portland, Oregon, USA, 15–18 Aug 2011), p. 332

  19. G. Namkoong, J. Kong, M. Samson, I. Hwang, K. Lee, Org. Electron. 14, 74 (2013)

    Article  Google Scholar 

  20. D.H. Apaydın, D.E. Yıldız, A. Cirpan, L. Toppare, Solar Energy Mater. Solar Cells 113, 100 (2013)

    Article  Google Scholar 

  21. D. Lee, J. Kim, S. Noh, C. Lee, in Proceedings of the 10th International Conference on Nanotechnology Joint Symposium with Nano Korea (KINTEX Korea, 17–20 Aug 2010), p. 1175

  22. P.M. Boland Jr., T. Abdel-Fattah, H. Baumgart, G. Namkoong, in Proceedings of ISDRS 2009 (College Park, MD, USA, 9–11 Dec 2009)

  23. P. Morvillo, E. Bobeico, S. Esposito, R. Diana, Energy Proc. 31, 69 (2012)

    Article  Google Scholar 

  24. E.A. Katz, D. Faiman, S.M. Tuladhar, J.M. Kroon, M.M. Wienk, T. Fromherz, F. Padinger, C.J. Brabec, N.S. Sariciftci, J. Appl. Phys. 90, 5343 (2001)

    Article  Google Scholar 

  25. V. Kažukauskas, M. Pranaitis, V. Janonis, Acta Phys. Pol. A 119, 128 (2011)

    Article  Google Scholar 

  26. D.E. Yıldız, D.H. Apaydın, L. Toppare, A. Cirpan, J. Appl. Poly. Sci. 134, 44817-1 (2017)

    Google Scholar 

  27. E.J. Meijer, D.M. De Leeuw, S. Setayesh, E.V. Veenendaal, B.-H. Huisman, P.W.M. Blom, J.C. Hummelen, U. Scherf, T.M. Klapwijk, Nat. Mater. 2, 678 (2003)

    Article  Google Scholar 

  28. S.H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Nat. Photon. 3, 297 (2009)

    Article  Google Scholar 

  29. S. Nam, S.G. Hahm, H. Han, J. Seo, C. Kim, H. Kim, S.R. Marder, M. Ree, Y. Kim, ACS Sustain. Chem. Eng. 4, 767 (2016)

    Article  Google Scholar 

  30. S.-H. Liao, H.-J. Jhuo, Y.-S. Cheng, S.-A. Chen, Adv. Mater. 25, 4766 (2013)

    Article  Google Scholar 

  31. Q. Wan, X. Guo, Z. Wang, W. Li, B. Guo, W. Ma, M. Zhang, Y. Li, Adv. Funct. Mater. 26, 6635 (2016)

    Article  Google Scholar 

  32. M. Pinzón, H. Alberto, D. Rocío, P. Pardo, J. Pablo, C. Alvarado, J.C.S. Reyes, R. Vera, B.A. Páez-Sierra, Univ. Sci. 15, 68 (2016)

    Article  Google Scholar 

  33. J.A. Hauch, P. Schilinsky, S.A. Choulis, R. Childers, M. Biele, C.J. Brabec, Solar Energy Mater. Solar Cells 92, 727 (2008)

    Article  Google Scholar 

  34. X. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Kroon, M.A.J. Michels, R.A.J. Janssen, Nano Lett. 5, 579 (2005)

    Article  Google Scholar 

  35. Y. He, in Organic Solar Cells: Fundamentals, Devices, and Upscaling, ed. by B.P. Rand, H. Richter (Pan Stanford Publishing Pte. Ltd., Florida, 2014), p. 127

    Chapter  Google Scholar 

  36. B. Burkhart, B.C. Thompson, in Organic Solar Cells: Fundamentals, Devices, and Upscaling, ed. by B.P. Rand, H. Richter (Pan Stanford Publishing Pte. Ltd., Florida, 2014), p. 3

    Chapter  Google Scholar 

  37. G. Li, V. Shrotriya, Y. Yao, Y. Yanga, J. Appl. Phys. 98, 043704 (2005)

    Article  Google Scholar 

  38. A. Saradhi, in Proceedings of the IEEE CONECCT 2014 (Department of Electrical Engineering, Birla Institute of Technology and Science Hyderabad, 500078, India, 2014), p. 1

  39. Z. Zhao, L. Rice, H. Efstathiadis, P. Haldar, in Materials Research Society Symposium Proceedings, p. 1123 (2009)

  40. N. Singh, A. Chaudhary, N. Rastogi, Int. J. Mater. Sci. 5, 22 (2015)

    Article  Google Scholar 

  41. S.K. Hau, K.M. O’Malley, Y.-J. Cheng, H.-L. Yip, H. Ma, A.K.-Y. Jen, IEEE J. Sel. Top. Quantum Electron. 16, 1665 (2010)

    Article  Google Scholar 

  42. R. Pacios, A.J. Chatten, K. Kawano, J.R. Durrant, D.D.C. Bradley, J. Nelson, Adv. Funct. Mater. 16, 2117 (2006)

    Article  Google Scholar 

  43. T.Y. Chu, S. Alem, P.G. Verly, S. Wakim, J. Lu, Y. Tao, S. Beaupré, M. Leclerc, F. Bélanger, D. Désilets, S. Rodman, D. Waller, R. Gaudiana, Appl. Phys. Lett. 95, 063304 (2009)

    Article  Google Scholar 

  44. J.S. Moon, J. Jo, A.J. Heeger, Adv. Energy Mater. 2, 304 (2012)

    Article  Google Scholar 

  45. S.P. Yang, W.G. Kong, B.Y. Liu, W.Y. Zheng, B.M. L, X.H. Liu, G.S. Fu, Chin. Phys. Lett. 28, 128401 (2011)

    Article  Google Scholar 

  46. J. Mescher, A. Mertens, A. Egel, S.W. Kettlitz, U. Lemmer, A. Colsmann, AIP Adv. 5, 077188-1 (2015)

    Article  Google Scholar 

  47. P.E. Keivanidis, V. Kamm, W. Zhang, G. Floudas, F. Laquai, I. McCulloch, D.D.C. Bradley, J. Nelson, Adv. Funct. Mater. 22, 2318 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakshi Koul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koul, S., Hakim, Nud. Recent Advances in the Determination of Optimal Active Layer Thickness for Bulk Heterojunction Organic Solar Cells. Trans. Electr. Electron. Mater. 19, 319–329 (2018). https://doi.org/10.1007/s42341-018-0053-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-018-0053-5

Keywords

Navigation