Skip to main content
Log in

Role of Micro and Nanofillers in Electrical Tree Initiation and Propagation in Cross-Linked Polyethylene Composites

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Electrical treeing is a pre-breakdown phenomenon responsible for the long-term degradation and failure of polymeric electrical insulation. This paper presents a study of electrical treeing in unfilled crosslinked polyethylene (XLPE), XLPE microcomposites (30, 40, and 50 wt% microsilica), and nanocomposites (1, 2, 3, 4, 5, and 10 wt% nanosilica) at an applied voltage of 12 kV. The XLPE nanocomposites show significant increase in electrical tree initiation and breakdown times compared to the microcomposites and unfilled XLPE. Notably, the 5 wt% nanocomposite shows the longest initiation and breakdown times and the least tree growth. The novelty of this study lies in the identification of nanosilica in the electrical tree channels via scanning electron microscopy. The role of micro and nanosilicas in electrical tree initiation and propagation is explained theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dissado L.A., Fothergill J.C.: Electrical degradation and breakdown in polymers, vol. 9 (IET Technology and Engineering 1992), pp. 69–195

  2. D.W. Auckland, B.R. Varlow, Eng. Sci. Educ. J. 4, 11 (1995). https://doi.org/10.1049/esej:19950105

    Article  Google Scholar 

  3. R.M. Eichhorn, Electron. Power 24, 125 (1978). https://doi.org/10.1049/ep.1978.0083

    Article  Google Scholar 

  4. A.S. Paramane, K.S. Kumar, IET Micro Nano Lett. 11, 844 (2016). https://doi.org/10.1049/mnl.2016.0496

    Article  Google Scholar 

  5. M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, J. Mater. Sci. 42, 3789 (2007). https://doi.org/10.1007/s10853-006-0413-0

    Article  Google Scholar 

  6. T. Tanaka, A. Bulinski, J. Castellon et al., IEEE Trans. Dielectr. Electr. Insul. 18, 1482 (2011). https://doi.org/10.1109/TDEI.2011.6032819

    Article  Google Scholar 

  7. A. Krivda, T. Tanaka, M. Frechette et al., IEEE Electr. Insul. Mag. 28, 38 (2012). https://doi.org/10.1109/MEI.2012.6159180

    Article  Google Scholar 

  8. G. Iyer, R.S. Gorur, R. Richert, A. Krivda, L.E. Schmidt, I.E.E.E. Trans, Dielectr. Electr. Insul. 18, 659 (2011). https://doi.org/10.1109/TDEI.2011.5931050

    Article  Google Scholar 

  9. T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 12, 914 (2005). https://doi.org/10.1109/TDEI.2005.1522186

    Article  Google Scholar 

  10. S. Alapati, J.M. Thomas, A. Karmarkar, IET Sci. Meas. Technol. 8, 60 (2014). https://doi.org/10.1049/iet-smt.2012.0032

    Article  Google Scholar 

  11. H.Z. Ding, Varlow B.R., IEEE LEOS Ann. Mtg. (2004) https://doi.org/10.1109/ceidp.2004.1364255

    Google Scholar 

  12. M.G. Danikas, T. Tanaka, IEEE Electr. Insul. M. 25, 19 (2009). https://doi.org/10.1109/MEI.2009.5191413

    Article  Google Scholar 

  13. Niedernhuber J., Kindersberger, J. in Journal of the International Conference on Solid Dielectrics, Bologna, Italy, p. 828 (2013). https://doi.org/10.1109/icsd.2013.6619839

  14. T. Han, B.X. Du, Y. Yu, X.Q. Zhang, IEEE Trans. Appl. Supercon. 26, 1 (2016)

    Google Scholar 

  15. I. Pleşa, P.V. Noţingher, S. Schlögl, C. Sumereder, M. Muhr, Polymers 8, 173 (2016). https://doi.org/10.3390/polym8050173

    Article  Google Scholar 

  16. A.S. Paramane, K. Sathish Kumar, Nanocomposites 3, 1 (2017). https://doi.org/10.1080/20550324.2017.1325987

    Article  Google Scholar 

  17. W.A. Izzati, Y.Z. Arief, Z. Adzis, M. Shafanizam, Sci. World J. (2014). https://doi.org/10.1155/2014/735070

    Google Scholar 

  18. M. Roy, J.K. Nelson, R.K. Maccrone, L.S. Schadler, C.W. Reed, R. Keefe, W. Zenger, IEEE Trans. Dielectr. Electr. Insul. 12, 629 (2005). https://doi.org/10.1109/tdei.2005.1511089

    Article  Google Scholar 

  19. J.V. Champion, S.J. Dodd, J. Phys. D Appl. Phys. 34, 1235 (2001). https://doi.org/10.1088/0022-3727/34/8/314

    Article  Google Scholar 

  20. L. Mittal, R. Sarathi, K. Sethupathi, Cryogenics 71, 62 (2015). https://doi.org/10.1016/j.cryogenics.2015.05.010

    Article  Google Scholar 

  21. M.H. Abderrazzaq, IEEE Trans. Dielectr. Electr. Insul. 19, 305 (2012). https://doi.org/10.1109/TDEI.2012.6418532

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. S. Chandrasekar of Sona College of Technology, Salem for allowing them to conduct the electrical treeing measurements. They are also thankful to the School of Bio Science and Technology of VIT University, Vellore for assistance with the SEM measurements and Mr. Bageerathan T. of the School of Mechanical Engineering, VIT University, Vellore for assistance with Siemens NX CAD software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannaiah Sathish Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paramane, A., Kumar, K.S. Role of Micro and Nanofillers in Electrical Tree Initiation and Propagation in Cross-Linked Polyethylene Composites. Trans. Electr. Electron. Mater. 19, 254–260 (2018). https://doi.org/10.1007/s42341-018-0040-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-018-0040-x

Keywords

Navigation