Advertisement

Effect of Carrier Diffusion on the Electrical Properties of Si–Zn–Sn–O/Ag/Si–Zn–Sn–O Multilayers

  • Jiao Long Yu
  • Sang Yeol Lee
Regular Paper

Abstract

Typically, a parallel circuit model is used to explain the electrical resistivity of oxide-metal-oxide (OMO) multilayers; such a model treats the top, middle, and bottom sublayers independently. However, in the case of semiconductor–metal-semiconductor multilayer systems, this model is not applicable; according to the theory of metal-semiconductor contact, carrier diffusion arising from the difference in the work functions of the materials should also be considered. In this paper, we investigate the effect of carrier diffusion on the electrical properties by changing the thickness of both the top and bottom oxide layers. We find that adjusting the thickness of the oxide sublayers realizes direct control of the carrier density in OMO multilayers.

Keywords

SZTO OMO Electrical properties Carrier diffusion 

References

  1. 1.
    S. Yu, L. Li, X. Lyu, W. Zhang, Sci. Rep. 6, 20399 (2016).  https://doi.org/10.1038/srep20399 CrossRefGoogle Scholar
  2. 2.
    D.J. Kim, H.J. Kim, K.W. Seo, K.H. Kim, T.W. Kim, H.K. Kim, Sci. Rep. 5, 16838 (2015)CrossRefGoogle Scholar
  3. 3.
    K.P. Sibin, N. Selvakumar, A. Kumar, A. Dey, N. Sridhara, H.D. Shashikala, A.K. Sharma, H.C. Barshilia, Sol. Energy 141, 118–126 (2017).  https://doi.org/10.1016/j.solener.2016.11.027 CrossRefGoogle Scholar
  4. 4.
    L. Liu, S. Ma, H. Wu, B. Zhu, H. Yang, J. Tang, Mater. Lett. 149, 43 (2015).  https://doi.org/10.1016/j.matlet.2015.02.093 CrossRefGoogle Scholar
  5. 5.
    J.H. Kim, D.H. Kim, S.K. Kim, D.K. Bae, Y.Z. Yoo, T.Y. Seong, Ceram. Int. 42, 14071–14076 (2016).  https://doi.org/10.1016/j.ceramint.2016.06.015 CrossRefGoogle Scholar
  6. 6.
    B.D. Boer, A. Hadipour, M.M. Mandoc, T.V. Woudenbergh, P.W.M. Blom, Adv. Mater. 17, 621 (2005).  https://doi.org/10.1002/adma.200401216 CrossRefGoogle Scholar
  7. 7.
    E. Chong, I. Kang, C.H. Park, S.Y. Lee, Thin Solid Films 534, 609–613 (2013).  https://doi.org/10.1016/j.tsf.2013.02.033 CrossRefGoogle Scholar
  8. 8.
    K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 6, 809 (2012).  https://doi.org/10.1038/nphoton.2012.282 CrossRefGoogle Scholar
  9. 9.
    P.N. Dyachenko, S. Molesky, A.Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, M. Eich, Nat. Commun. 7, 11809 (2015).  https://doi.org/10.1038/ncomms11809 CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2018

Authors and Affiliations

  1. 1.Department of Semiconductor EngineeringCheongju UniversityCheongjuKorea
  2. 2.Department of Electrical EngineeringKorea UniversitySeoulKorea

Personalised recommendations