Skip to main content

Nonlinear Dielectric Response of Nanocomposites Based on Potassium Dihydrogen Phosphate

A Correction to this article was published on 28 September 2018

A Correction to this article was published on 12 April 2018

This article has been updated

Abstract

Nonlinear properties of nanocomposites based on KH2PO4 embedded in nanosized silica matrices with pore sizes of 2.6 and 3.8 nm were investigated. It was found that the structural phase transition temperature for KH2PO4 nanoparticles was higher than that for bulk KH2PO4. Investigations of temperature dependence of the second (\(\upchi_{2}^{\prime }\))- and third (\(\upchi_{3}^{\prime }\))-order dielectric susceptibilities showed the presence of nonlinear properties in the paraelectric phase for the bulk and nanocomposite samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Change history

  • 28 September 2018

    The original version of this article unfortunately contained a mistake. The spelling of the fourth author’s name had been incorrect.

  • 12 April 2018

    The original version of this article unfortunately contained a mistake. The spelling of the fourth author’s name “Svetlana Kozlola” was incorrect.

References

  1. 1.

    S.V. Pankova, V.V. Poborchii, V.G. Solovev, J. Phys. Condens. Matter 8, 203 (1996). https://doi.org/10.1088/0953-8984/8/12/001

    Article  Google Scholar 

  2. 2.

    D. Yadlovker, S. Berger, Phys. Rev. B 71, 184112 (2005). https://doi.org/10.1103/PhysRevB.71.184112

    CAS  Article  Google Scholar 

  3. 3.

    S.V. Baryshnikov, E.V. Charnaya, A.Yu. Milinskii, Yu.V. Patrushev, Phys. Solid State 55, 2566 (2013). https://doi.org/10.1134/S1063783413120056

    CAS  Article  Google Scholar 

  4. 4.

    S.V. Baryshnikov, E.V. Charnaya, A.Yu. Milinskiy, Ferroelectrics 471, 109 (2014). https://doi.org/10.1080/00150193.2014.963428

    CAS  Article  Google Scholar 

  5. 5.

    S.V. Baryshnikov, E.V. Charnaya, A.Yu. Milinskii, A.Yu. Goikhman, C. Tien, M.K. Lee, L.J. Chang, Phys. Solid State 55, 1070 (2013). https://doi.org/10.1134/S1063783413050041

    CAS  Article  Google Scholar 

  6. 6.

    S.V. Baryshnikov, E.V. Charnaya, Yu.A. Shatskaya, A.Yu. Milinskiy, M.I. Samoilovich, D. Michel, C. Tien, Phys. Solid State 53, 1212 (2013). https://doi.org/10.1134/S1063783411060059

    CAS  Article  Google Scholar 

  7. 7.

    A.R. Geǐvandov, S.G. Yudin, V.M. Fridkin, S. Ducharme, Phys. Solid State 47, 1590 (2005). https://doi.org/10.1134/1.2014523

    CAS  Article  Google Scholar 

  8. 8.

    S.G. Yudin, L.M. Blinov, N.N. Petukhova, S.P. Palto, J. Exp. Theor. Phys. Lett. 70, 633 (1999). https://doi.org/10.1134/1.568227

    CAS  Article  Google Scholar 

  9. 9.

    H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford, 1971), p. 336

    Google Scholar 

  10. 10.

    J.E. Tibballs, R.J. Nelmes, G.J. McIntyre, J. Phys. C Solid State Phys. 15, 37 (1982)

    CAS  Article  Google Scholar 

  11. 11.

    S.D. Kirik, V.A. Parfenov, S.M. Zharkov, Microp. Mesop. Mater. 195, 21 (2014). https://doi.org/10.1016/j.micromeso.2014.04.012

    CAS  Article  Google Scholar 

  12. 12.

    S.D. Kirik, V.A. Parfenov, Glass Phys. Chem. 40, 49 (2014). https://doi.org/10.1134/S1087659614010118

    CAS  Article  Google Scholar 

  13. 13.

    S. Miga, J. Dec, W. Kleemann, Rev. Sci. Instrum. 78, 033902 (2007). https://doi.org/10.1063/1.2712792

    CAS  Article  Google Scholar 

  14. 14.

    S. Ikeda, H. Kominami, K. Koyama, Y. Wada, J. Appl. Phys. 62, 3339 (1987). https://doi.org/10.1063/1.339294

    CAS  Article  Google Scholar 

  15. 15.

    K.W. Wagner, Die Isolierstoffe der Elektrotechnik (Springer, Berlin, 1957), p. 422

    Google Scholar 

  16. 16.

    Yu.P. Emets, Tech. Phys. 48, 317 (2003). https://doi.org/10.1134/1.1562260

    CAS  Article  Google Scholar 

  17. 17.

    S.V. Baryshnikov, N.P. Andriyanova, E.V. Stukova, E.V. Charnaya, C. Tien, D. Michel, Phys. Solid State 49, 791 (2007). https://doi.org/10.1134/S1063783407040324

    CAS  Article  Google Scholar 

  18. 18.

    W.L. Zhong, Y.G. Wang, P.L. Zhang, Phys. Rev. B 50, 698 (1994). https://doi.org/10.1103/PhysRevB.50.698

    CAS  Article  Google Scholar 

  19. 19.

    Y.G. Wang, W.L. Zhong, P.L. Zhang, Solid State Commun. 90, 329 (1994). https://doi.org/10.1016/0038-1098(94)90162-7

    CAS  Article  Google Scholar 

  20. 20.

    C.L. Wang, Y. Xin, X.S. Wang, W.L. Zhong, Phys. Rev. B 62, 11423 (2000). https://doi.org/10.1103/PhysRevB.62.11423

    CAS  Article  Google Scholar 

  21. 21.

    P. Sedykh, D. Michel, Phys. Rev. B 79, 134119 (2009). https://doi.org/10.1103/PhysRevB.79.134119

    CAS  Article  Google Scholar 

  22. 22.

    E.V. Charnaya, A.L. Pirozerskii, C. Tien, M.K. Lee, Ferroelectrics 350, 75 (2007). https://doi.org/10.1080/00150190701369883

    CAS  Article  Google Scholar 

  23. 23.

    A.L. Pirozerskiĭ, E.V. Charnaya, Phys. Solid State 52, 620 (2010). https://doi.org/10.1134/S106378341003025X

    CAS  Article  Google Scholar 

  24. 24.

    S. Miga, J. Dec, Ferroelectrics 367, 223 (2008). https://doi.org/10.1080/00150190802377553

    CAS  Article  Google Scholar 

  25. 25.

    A.Yu. Milinskiy, E.V. Stukova, Bull. Russ. Acad. Sci. Phys. 80, 1089 (2016). https://doi.org/10.3103/S1062873816090331

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nguyen Hoai Thuong.

Additional information

The original version of this article was revised: The spelling of the fourth author’s name “Svetlana Kozlola” was incorrect.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Milinskii, A., Baryshnikov, S., Parfenov, V. et al. Nonlinear Dielectric Response of Nanocomposites Based on Potassium Dihydrogen Phosphate. Trans. Electr. Electron. Mater. 19, 201–205 (2018). https://doi.org/10.1007/s42341-018-0032-x

Download citation

Keywords

  • Nanocomposites
  • Ferroelectrics
  • Dielectric susceptibility
  • Nonlinear properties