Characterization of the Absence of Polar and Inter-valley Scattering Mechanisms from Charge-Carrier Energy Curves for “In0.53Ga0.47As” Using Monte Carlo Simulation

  • Soufiane Derrouiche
  • Benyounes Bouazza
  • Choukria Sayah
Regular Paper


In this work, we present a study of the characterization of the existence and absence of polar and inter-valley scattering mechanisms in In0.53Ga0.47As through analysis of the stationary and non-stationary curves of charge-carrier energy. The absence of polar scattering mechanisms is determined from the observation of a marked increase in carrier energy on the stationary curve of charge carriers energy as a function of applied electric field whose a dramatic and fastly increase of charge carriers energy is registered in their absence. In contrast, the absence of inter-valley scattering mechanisms is determined by the presence of an increase in carrier energy on the non-stationary curve as a function of applied electric field.


Monte Carlo method Electronic transport properties Characterization of polar and inter-valley scattering mechanisms In0.53Ga0.47As Charge carrier energy 



This work was supported by the Ministry of Higher Education and Scientific Research Algeria though the Laboratory for Materials and Renewable Energies.


  1. 1.
    T. Sadi, R. Kelsall, IEEE Trans. Electron Dev. 53, 1768 (2006). CrossRefGoogle Scholar
  2. 2.
    E. Kobayashi, C. Hamaguchi, T. Matsuoka, K. Taniguchi, IEEE Trans. Electron Dev. 36, 2353 (1989). CrossRefGoogle Scholar
  3. 3.
    E. Kobayashi, T. Matsuoka, K. Taniguchi, C. Hamaguchi, Solid State Electron. 32, 1845 (1989)CrossRefGoogle Scholar
  4. 4.
    M.A. Osman, H.L. Grubin, Solid State Electron. 31, 653 (1988)CrossRefGoogle Scholar
  5. 5.
    S.L. Chan, K.Y. Choo, in IEEE 2nd International Conference on Photonics (ICP), Kata Kinabalu, Malaysia, (2011), pp. 1–5,
  6. 6.
    B. Bouazza, A. Guen-Bouazza, L. Amer, C. Sayeh, N.E. Chabane-Sari, C. Gontrand, Afr. Sci. 01, 55 (2005)Google Scholar
  7. 7.
    F.M. Abou El-Ela, A.Z. Mohamed, J. Mod. Phys. 2, 1324 (2011)CrossRefGoogle Scholar
  8. 8.
    B.K. Ridley, Quantum Processes in Semiconductors, 3rd edn. (Clarendon, Oxford, 1993)Google Scholar
  9. 9.
    C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer, New York, 1989). CrossRefGoogle Scholar
  10. 10.
    S. Benali, étude par simulation de Monte-Carlo des propriétés de transport électronique dans les composés Si1-xGex, These de majister en science des matériaux, (2006)Google Scholar
  11. 11.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci. Mater. Electron. 17, 87 (2006). CrossRefGoogle Scholar
  12. 12.
    R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (Adam-Hilger, Bristol, 1988). CrossRefGoogle Scholar
  13. 13.
    A. Kaszynski,  étude des phénomènes de transport dans les matériaux semiconducteur par les méthodes de Monte-Carlo:Application a l’Arséniure de Gallium de type N » , Thèse de doctorat, Université de Lille, N° ordre:236, (1979)Google Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2018

Authors and Affiliations

  • Soufiane Derrouiche
    • 1
  • Benyounes Bouazza
    • 1
  • Choukria Sayah
    • 2
  1. 1.Laboratory for Materials and Renewable Energies, Department of Electrical and Electronics Engineering, Faculty of TechnologyUniversity Abou Bekr Belkaid of TlemcenTlemcenAlgeria
  2. 2.Department of Electrical Engineering, Faculty of TechnologyUniversity Center Belhadj Bouchaib of Ain-TemouchentAin-TemouchentAlgeria

Personalised recommendations