Experimental and Numerical Investigations of Effect of Alternating Current Interference Corrosion on Neighboring Pipelines

  • Fatiha Babaghayou
  • Boubakeur Zegnini
  • Tahar Seghier
Regular Paper


High-voltage (HV) power lines sometimes share the same path as buried pipelines that are protected by an insulation coating and cathodic protection (CP). However, the neighboring HV power lines induce an alternating current (AC) that causes corrosion damage to metallic structures, which is known as the AC corrosion phenomenon. In this study, we conducted an experimental investigation on a laboratory model to realize electrochemical tests on a pipeline steel sample. Afterward, we performed numerical simulation studies of the electrochemical reactions involved in the corrosion, such as the anodic and cathodic processes, i.e., the iron oxidation and reduction of both oxygen and hydrogen. We also simulated the CP, AC corrosion, and deformation of the steel pipeline sample. Finally, to remedy the problem of AC corrosion damage, we developed a monitoring and correction program to optimize it. The main novelty of our work resides in our experimental and numerical simulation results, which were in good agreement, along with the development of the program for the automatic mitigation of AC corrosion.


AC interference AC corrosion Cathodic protection Electrochemical tests 



We would like to thank the Laboratory of Process Engineering Department and Laboratory of Mechanics, Amar Telidji University of Laghouat, Algeria and ENS (Higher Normal School of Laghouat) for EC-LAB. The authors thank Professor Teguar Madjid, Research Laboratory of Electrical Engineering, National Polytechnic, El-Harrach, Algeria, for the COMSOL code.


  1. 1.
    L. Di Biase, in AC Corrosion on Cathodically Protected Pipelines: Guidelines for Risk Assessment and Mitigation Measures, ed. by CeoCor (Corrosion Protection and Pipeline Protection European Committee CLC, Luxembourg, 2001)Google Scholar
  2. 2.
    P.N. Mikropoulos, T.E. Tsovilis, I.E.T. Generation, Transm. Distrib. 4, 12 (2010). Google Scholar
  3. 3.
    A. Brenna, L. Lazzari, C. Castiglioni, A Proposal of AC Corrosion Mechanism of Carbon Steel in Cathodic Protection Condition, Ph. D. Dissertation (Italy) (Materials Engineering Polytechnic, Milano, Italy, 2012)Google Scholar
  4. 4.
    Y. Hosokawa, F. Kajiyama, Y. Nakamura, in Proceeding of the International Conference Corrosion 2004 (NACE International March 2004) 60, pp. 304–312.
  5. 5.
    A. Ametani, I.E.T. Science, Meas. Technol. 2, 2 (2008). Google Scholar
  6. 6.
    L.V. Nielsen, K.V. Nielsen, B. Baumgarten, H. Breuning-Madsen, P. Cohn, H.B. Rosenberg, in Proceeding of the International Conference NACE Corrosion 2004 (New Orleans) (NACE Corrosion, New Orleans 2004 28 March–1 April) pn. 04211Google Scholar
  7. 7.
    N. Kioupis, K. Maroulis, in Proceeding of the International 8th Conference Pipeline Rehabilitation and Maintenance 2006 (Turkey) (Istanbul, Turkey, 2006)Google Scholar
  8. 8.
    Y. Hosokawa, F. Kajiyama, Y. Nakamura, in Proceeding of the International Conference 23rd World Gas 2006 (Holland) (Amsterdam, Holland, 2006 June 5–9), p. 641Google Scholar
  9. 9.
    L.V. Nielsen, in Proceeding of the International Conference NACE Corrosion 2005 (Houston TX) (NACE Corrosion, New Houston, TX, USA, 2005) pn. 05788Google Scholar
  10. 10.
    G.C. Christoforidis, D.P. Labridis, P.S. Dokopoulos, Electr. Power Syst. Res. 66, 2 (2003). CrossRefGoogle Scholar
  11. 11.
    A. Brenna, L. Lazzari, M. Pedeferri, M. Ormellese, La Metall. Italiana 6, 29–34 (2014)Google Scholar
  12. 12.
    Q. Ding, Y. Fan, Int. J. Corros. 2016 (2016) ID.561392.
  13. 13.
    I. Ibrahim, B. Tribollet, H. Takenouti et al., J. Braz. Chem. Soc. 26, 1 (2015). Google Scholar
  14. 14.
    Y. Yang, S. Wang, C. Wen, Int. J. Electrochem. Sci. 11, 8 (2016). Google Scholar
  15. 15.
    NACE SP0177N, Mitigation of Alternating Current and Lightning Effects on Metallic Structures and Corrosion Control Systems (NACE International Practice, Houston, 2007)Google Scholar
  16. 16.
    Multiphysics C., Comsol Reference Guide, Comsol Multiph ed. (Comsol Multiphysics, 2012) pn. CM020005Google Scholar
  17. 17.
    E. Gongadze, S. Petersen, U. Beck, et al., in Proceeding of the International Conference Comsol 2009 (Italy) (Milan, Italy, 2009)Google Scholar
  18. 18.
    Y. Hosokawa, F. Kajiyama, Y. Nakamura, in Proceeding of the International Conference NACE Corrosion 2002 (USA) (Denver, Colorado, USA, 2002 April 7–11), no. 51300-02111SGGoogle Scholar
  19. 19.
    G. Wakelin, R.A. Gummow, S.M. Segall, in Proceeding of the International Conference NACE Corrosion 1998 (USA) (Houston, USA, 1998), pn. 98565Google Scholar
  20. 20.
    P. Nichols, B. Holtsbaum, K. Parker, D.A. Schramm, S.R. Zurbuchen, S. Nelson, D. Mayfield, in CP3-Cathodic Protection, ed. by NACE (Technologist Course Manual, Houston, 2008)Google Scholar
  21. 21.
    R. Ludwig, G. Leuenberger, S. Makarov, D. Apelian, J. Nondestruct. Eval. 21, 1 (2002). CrossRefGoogle Scholar
  22. 22.
    P. Kofstad, T. Norby, Defects and Transport in Crystalline Solids (Advanced level course, Department of Chemistry, University of OSLO, Norway, 2007)Google Scholar
  23. 23.
    BioLogic, EC-Lab., ed. BioiLogic Sience Instruments (V.10.1x. 2011)Google Scholar
  24. 24.
    E. Muehlenkamp, M. Koretsky, J. Westall, in Proceeding of the International Conference Corrosion 2005 (Corrosion June 2005), pp. 519–533Google Scholar
  25. 25.
    K.B. Deshpande, Corros. Sci. 52, 10 (2010). Google Scholar
  26. 26.
    M. Freda, A. Giannetti L. Lattanzi, S. Luperi, in Proceeding of the International Conference Excerpt from the proceeding Comsol 2013 (Netherlands) (Rotterdam, Netherlands, 2013)Google Scholar
  27. 27.
    E.B. Muehlenkamp, Electrochemical Modeling of Cathodic Protection Systems Applied to Reinforced Concrete Structures (Chemical Engineering University, Corvallis, 2005)Google Scholar
  28. 28.
    M.I. Abdulsalam, H.W. Pickering, J. Electrochem. Soc. 145, 7 (1998). CrossRefGoogle Scholar
  29. 29.
    K.B. Deshpande, Corros. Sci. (2012). Google Scholar
  30. 30.
    F. Babaghayou, B. Zegnini, T. Seghier, in Proceeding of the 2016 International Conference on Electrical Sciences and Technologies in Maghreb, IEEE (Marrakech, Morocco, 26–28 Oct. 2016), pp. 1–6, n 17258979.

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2018

Authors and Affiliations

  • Fatiha Babaghayou
    • 1
  • Boubakeur Zegnini
    • 1
  • Tahar Seghier
    • 1
  1. 1.Laboratoire d’études et Développement des Matériaux Semi-Conducteurs et DiélectriquesUniversité Amar Telidji LaghouatLaghouatAlgeria

Personalised recommendations