Dislocation-Related Electron Transport in Au Schottky Junctions on AlGaN/GaN

Regular Paper
  • 3 Downloads

Abstract

We investigated the electrical properties of Au/AlGaN/GaN Schottky junctions as a function of temperature by analyzing the current–voltage (IV) measurements. The barrier height increased with increasing temperature, but the ideality factor decreased. Increases in temperature are associated with barrier inhomogeneity. The modified Richardson plots for Al0.25Ga0.75N yielded a higher Richardson constant, 77.3 A cm−2K−2, than theoretically predicted (30.0 A cm−2 K−2). This indicates that the thermionic emission (TE) model with barrier inhomogeneity is not suitable for explaining the transport characteristics of the junction. We fitted the experimental IV data to predictions based on various transport mechanisms, such as TE, generation-recombination, and tunneling currents. The dominant transport mechanism at all temperatures was found to be caused by the tunneling current. The dislocation model of the tunneling current yielded a dislocation density of 2.96 × 106 cm−2.

Keywords

AlGaN/GaN Tunneling current Dislocation density 

Notes

Acknowledgemenst

This research was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03030400).

References

  1. 1.
    J. Ibbetson, P. Fini, K. Ness, S. DenBaars, J. Speck, U. Mishra, Appl. Phys. Lett. 77, 250 (2000).  https://doi.org/10.1063/1.126940 CrossRefGoogle Scholar
  2. 2.
    O. Ambacher, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy, W. Schaffl, L. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, J. Appl. Phys. 85, 3222 (1999).  https://doi.org/10.1063/1.369664 CrossRefGoogle Scholar
  3. 3.
    Y. Lv, Z. Lin, T. Corrigan, J. Zhao, Z. Cao, L. Meng, C. Luan, Z. Wang, H. Chen, J. Appl. Phys. 109, 074512 (2011).  https://doi.org/10.1063/1.3569594 CrossRefGoogle Scholar
  4. 4.
    D. Marcon, J. Viaene, P. Favia, H. Bender, X. Kang, S. Lenci, S. Decoutere, Microelectron. Reliab. 52, 2188 (2012).  https://doi.org/10.1016/j.microrel.2012.06.052 CrossRefGoogle Scholar
  5. 5.
    D. Yan, H. Lu, D. Cao, D. Chen, R. Zhang, Y. Zheng, Appl. Phys. Lett. 97, 153503 (2010).  https://doi.org/10.1063/1.3499364 CrossRefGoogle Scholar
  6. 6.
    Z. Liu, G. Ng, S. Arulkumaran, Y. Maung, H. Zhou, Appl. Phys. Lett. 98, 163501 (2011).  https://doi.org/10.1063/1.3573794 CrossRefGoogle Scholar
  7. 7.
    J. Zhu, X. Ma, B. Hou, W. Chen, Y. Hao, Appl. Phys. Lett. 104, 153510 (2014).  https://doi.org/10.1063/1.4871802 CrossRefGoogle Scholar
  8. 8.
    D. Qiao, L. Yu, S. Lau, J. Redwing, J. Lin, H. Jiang, J. Appl. Phys. 87, 801 (2000).  https://doi.org/10.1063/1.371944 CrossRefGoogle Scholar
  9. 9.
    M. Rezau, H. Khan, H. Nakayama, T. Detchprohm, K. Hiramatsu, N. Sawaki, Solid State Electron. 41, 287 (1997).  https://doi.org/10.1016/S0038-1101(96)00231-6 CrossRefGoogle Scholar
  10. 10.
    L. Zhou, A. Ping, K. Boutros, J. Redwing, I. Adesida, Electron. Lett. 35, 745 (1999).  https://doi.org/10.1049/el:19990489 CrossRefGoogle Scholar
  11. 11.
    E. Arslan, Ş. Altındal, S. Özçelik, E. Ozbay, J. Appl. Phys. 105, 023705 (2009).  https://doi.org/10.1063/1.3068202 CrossRefGoogle Scholar
  12. 12.
    H. Kim, D. Lee, H. Myung, Korean J. Mater. Res. 26, 412 (2016).  https://doi.org/10.3740/MRSK.2016.26.8.412 CrossRefGoogle Scholar
  13. 13.
    R. Tung, Mater. Sci. Eng., R 35, 1 (2001).  https://doi.org/10.1016/S0927-796X(01)00037-7 CrossRefGoogle Scholar
  14. 14.
    D. Seghier, H. Gislason, Phys. Scr. T101, 230 (2002).  https://doi.org/10.1238/Physica.Topical.101a00230 CrossRefGoogle Scholar
  15. 15.
    M. Khan, H. Nakayama, T. Detchprohm, K. Hiramatsu, N. Sawaki, Solid State Electron. 41, 287 (1997).  https://doi.org/10.1016/S0038-1101(96)00231-6 CrossRefGoogle Scholar
  16. 16.
    D. Donoval, A. Chvála, R. Šramatý, J. Kováč, E. Morvan, Ch. Dua, M. DiForte-Poisson, P. Kordoš, J. Appl. Phys. 109, 063711 (2011).  https://doi.org/10.1063/1.3560919 CrossRefGoogle Scholar
  17. 17.
    E. Monroy, F. Calle, J. Pau, F. Sánchez, E. Muñoz, F. Omnès, B. Beaumont, P. Gibart, J. Appl. Phys. 88, 2081 (2000).  https://doi.org/10.1063/1.1305838 CrossRefGoogle Scholar
  18. 18.
    J. Ren, D. Yan, Y. Zhai, W. Mou, X. Gu, Microelectron. Reliab. 61, 82 (2016).  https://doi.org/10.1016/j.microrel.2015.11.005 CrossRefGoogle Scholar
  19. 19.
    A. Belyaev, N. Boltovets, V. Ivanov, V. Klad’ko, R. Konakova, Y. Kudrik, A. Kuchuk, V. Milenin, Y. Sveshnikov, V. Sheremet, Semiconductors 42, 689 (2008).  https://doi.org/10.1134/S1063782608060092 CrossRefGoogle Scholar
  20. 20.
    H. Hasegawa, O. Susumu, J. Vac. Sci. Technol., B 20, 1647 (2002).  https://doi.org/10.1116/1.1491539 CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2018

Authors and Affiliations

  1. 1.Department of Visual OpticsSeoul National University of Science and Technology (Seoultech)SeoulSouth Korea
  2. 2.Korea Advanced Nano Fab CenterSuwon, GyeonggiSouth Korea

Personalised recommendations