Skip to main content
Log in

Effect of Parasitic Capacitance on RF MEMS Switch OFF/ON Ratio

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Radio frequency micro-electro-mechanical system (RF MEMS) switch is basic component for transponders used in communication system. Switch “OFF/ON” capacitance ratio plays major role in controlling signal to noise ratio. Theoretically, with high dielectric constant material or floating metal concept, capacitance ratio can be improved up to 2000 or even more. Whereas, in most of the practical cases, measured ratio is less than 200. In present paper, RF MEMS capacitive switch LCR parameters are extracted considering parasitic capacitance to explain the mismatch of measured results. Parasitic capacitance is independent from device overlap area. Parasitic capacitance is function of switch geometry and directly proportional to dielectric constant of the substrate material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Najafi, Micropackaging technologies for integrated microsystems: applications to MEMS and MOEMS. Proc. SPIE 4979, 1–19 (2003)

    Article  Google Scholar 

  2. C. Goldsmith, D. Forehand, D. Scarbrough, Z. Peng, C. Palego, J. Hwang, J. Clevenger, Understanding and improving longevity in RF MEMS capacitive switches. Proc. SPIE 6884, 688403–688403-12 (2008)

    Article  Google Scholar 

  3. D. Bansal, A. Bajpai, P. Kumar, M. Kaur, K. Rangra, Fabrication and analysis of radiofrequency MEMS series capacitive single-pole double-throw switch. J. Micro/Nanolithography, MEMS, MOEMS 15(4), 045001 (2016)

    Article  Google Scholar 

  4. A.Q. Liu, W. Palei, M. Tang, A. Alphones, Single-pole-four-throw switch using high-aspect-ratio lateral switches. Electron. Lett. 40(18), 1125 (2004)

    Article  Google Scholar 

  5. J. Iannacci, M. Huhn, C. Tschoban, H. Pötter, RF-MEMS technology for future (5G) mobile and high-frequency applications: reconfigurable 8-bit power attenuator tested up to 110 GHz. IEEE Electron Device Lett. 37(12), 1646–1649 (2016)

    Article  Google Scholar 

  6. Z.J. Guo, N.E. McGruer, G.G. Adams, Modeling, simulation and measurement of the dynamic performance of an ohmic contact, electrostatically actuated RF MEMS switch. J. Micromech. Microeng. 17(9), 1899–1909 (2007)

    Article  Google Scholar 

  7. A.S. Khan, T. Shanmuganantham, Design and analysis of RF MEMS cantilever switches for parameter enhancement. Trans. Electr. Electron. Mater. 0123456789, 1–9 (2018)

    Google Scholar 

  8. D. Bansal, A. Kumar, A. Sharma, P. Kumar, K.J. Rangra, Design of novel compact anti-stiction and low insertion loss RF MEMS switch. Microsyst. Technol. 20(2), 337–340 (2013)

    Article  Google Scholar 

  9. D. Bansal, A. Bajpai, P. Kumar, A. Kumar, M. Kaur, K. Rangra, Design and fabrication of a reduced stiction radio frequency MEMS switch. J. Micro/Nanolithography, MEMS, MOEMS 14(3), 035002 (2015)

    Article  Google Scholar 

  10. C.D. Patel, G.M. Rebeiz, A compact RF MEMS metal-contact switch and switching networks. IEEE Microw. Wirel. Compon. Lett. 22(12), 642–644 (2012)

    Article  Google Scholar 

  11. K. Rangra, B. Margesin, L. Lorenzelli, F. Giacomozzi, C. Collini, M. Zen, G. Soncini, L. del Tin, R. Gaddi, Symmetric toggle switch—a new type of rf MEMS switch for telecommunication applications: design and fabrication. Sens. Actuators A Phys. 123–124, 505–514 (2005)

    Article  Google Scholar 

  12. J.B. Muldavin, G.M. Rebeiz, High Isolation CPW MEMS Shunt Switches Part 2: design. Jet Propuls. 48(6), 1–4 (1999)

    Google Scholar 

  13. J.-H. Park, H.-C. Lee, Y.-H. Park, Y.-D. Kim, C.-H. Ji, J. Bu, H.-J. Nam, A fully wafer-level packaged RF MEMS switch with low actuation voltage using a piezoelectric actuator. J. Micromech. Microeng. 16(11), 2281–2286 (2006)

    Article  Google Scholar 

  14. R. Al-Dahleh, R.R. Mansour, High-capacitance-ratio warped-beam capacitive MEMS switch designs. J. Microelectromech. Syst. 19(3), 538–547 (2010)

    Article  Google Scholar 

  15. A. Persano, F. Quaranta, A. Cola, A. Taurino, G. De Angelis, R. Marcelli, P. Siciliano, Ta2O5 thin films for capacitive RF MEMS switches. J. Sens. 2010, 1–5 (2010)

    Article  Google Scholar 

  16. V.K. Varadan, K.J. Vinoy, K.A. Jose, RF MEMS and their Applications (Wiley, Hoboken, 2003)

    Google Scholar 

  17. M. Li, J. Zhao, Z. You, G. Zhao, Solid-state electronics design and fabrication of a low insertion loss capacitive RF MEMS switch with novel micro-structures for actuation. Solid State Electron. 127, 32–37 (2017)

    Article  Google Scholar 

  18. A.H. Zahr, L.Y. Zhang, C. Dorion, A. Deveautour, A. Beneteau, R. Stefanini, P. Blondy, F. Courtade, A. Thomas, Long-term actuation demonstration of RF-MEMS switches for space applications. Symp. Des. Test Integr. Packag. MEMS MOEMS 2, 1–4 (2018)

    Google Scholar 

  19. K.G. Sravani, T.L. Narayana, K. Guha, K.S. Rao, Role of dielectric layer and beam membrane in improving the performance of capacitive RF MEMS switches for Ka-band applications. Microsyst. Technol. 4, 1–10 (2018). https://doi.org/10.1007/s00542-018-4038-4

    Google Scholar 

  20. G.M. Rebeiz, RF MEMS Theory, Design, and Technology (Wiley, New Jersey, 2003)

    Google Scholar 

  21. D. Bansal, A. Kumar, A. Sharma, K.J. Rangra, Design of compact and wide bandwidth SPDT with anti-stiction torsional RF MEMS series capacitive switch. Microsyst. Technol. 21(5), 1047–1052 (2015)

    Article  Google Scholar 

  22. D. Bansal, A. Bajpai, P. Kumar, M. Kaur, A. Kumar, A. Chandran, K. Rangra, Low voltage driven RF MEMS capacitive switch using reinforcement for reduced buckling. J. Micromech. Microeng. 27(2), 024001 (2017)

    Article  Google Scholar 

  23. H. Zareie, G.M. Rebeiz, High-power RF MEMS switched capacitors using a thick metal process. IEEE Trans. Microw. Theory Tech. 61(1), 455–463 (2013)

    Article  Google Scholar 

  24. J.B. Muldavin, G.M. Rebeiz, High-isolation CPW MEMS shunt switches-part 1: modeling. IEEE Trans. Microw. Theory Tech. 48(6), 1038–1044 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks Council of Scientific and Industrial Research (CSIR), India for providing financial support under project head MLP-105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Bansal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, D., Mehta, K., Bajpai, A. et al. Effect of Parasitic Capacitance on RF MEMS Switch OFF/ON Ratio. Trans. Electr. Electron. Mater. 20, 113–117 (2019). https://doi.org/10.1007/s42341-018-00093-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-018-00093-4

Keywords

Navigation