Abstract
This study examines how collaborative activity among students and the teacher to investigate disciplinary questions, which we term ‘joint exploration’, is established and maintained in a secondary mathematics classroom. Although collaborative and active learning is increasingly sought after in mathematics classrooms, studies of instances of joint exploration remain relatively rare. In this study, we use the theoretical perspective of positioning to conceptualize joint exploration as involving the negotiation among participants to position students with epistemic authority and agency. Using a constant comparative method, we use classroom video data of two episodes containing joint exploration and closely analyse the shifts in epistemic positioning within them. We find that shifts in epistemic positioning, especially with respect to students positioning one another with epistemic authority and exercising epistemic agency, help to support continued joint exploration. We also find that the teacher can play an important role in decentring themselves as the epistemic authority. In addition to these findings, this study contributes a distinction in epistemic authority and agency, as we explain how the two concepts are related and involved in establishing and maintaining joint exploration.
Résumé
Dans cette étude, on cherche à comprendre comment l’activité collaborative entre les élèves et l’enseignant pour analyser des questions liées à la discipline, ce que nous appelons « exploration conjointe», est établie et maintenue dans une classe de mathématiques du secondaire. Bien que l’apprentissage collaboratif et actif soit de plus en plus recherché dans les classes de mathématiques, les études portant sur les exemples d’exploration conjointe restent relativement rares. Dans cette étude, nous utilisons l’approche théorique du positionnement pour conceptualiser l’exploration conjointe sur la base d’une négociation entre les participants afin de doter les élèves d’une autorité épistémique et d’une capacité d’agir. À l’aide d’une méthode comparative soutenue, nous employons des données vidéo montrant deux épisodes d’exploration conjointe en classe et analysons de près les changements de positionnement épistémique observés dans ces épisodes. Nous constatons que les variations de positionnement épistémique, en particulier en ce qui concerne les élèves qui s’attribuent les uns les autres une autorité épistémique et qui exercent également une capacité d’agir épistémique, contribuent à soutenir le maintien de l’exploration conjointe. Nous remarquons également que l’enseignant peut jouer un rôle important en s’éloignant de son rôle d’autorité épistémique. Au-delà de ces résultats, cette étude établit une distinction entre l’autorité épistémique et la capacité d’agir, alors que nous expliquons comment les deux concepts sont liés et impliqués dans la mise en œuvre et le maintien de l’exploration conjointe.

Similar content being viewed by others
Data Availability
The participants of this study did not give written consent for their data to be shared publicly, so due to the sensitive nature of the research supporting data is not available.
References
Abdu, R., & Schwarz, B. (2020). Split up, but stay together: Collaboration and cooperation in mathematical problem solving. Instructional Science, 48, 313–336. https://doi.org/10.1007/s11251-020-09512-7
Adams-Wiggins, K. R., Myers, M. N., & Dancis, J. S. (2020). Negotiating status hierarchies in middle school inquiry science: implications for marginal non‐participation. Instructional Science, 48, 427-451. https://doi.org/10.1007/s11251-020-09514-5
Amit, M., & Fried M. N. (2005). Authority and authority relations in mathematics education: A view from an 8th grade classroom. Educational Studies in Mathematics, 58, 145-168. https://doi.org/10.1007/s10649-005-3618-2
Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM Mathematics Education, 45, 797-810. https://doi.org/10.1007/s11858-013-0506-6
Barron, B. (2003). When smart groups fail. Journal of the Learning Sciences, 12(3), 307–359. https://doi.org/10.1207/S15327809JLS1203_1
Basu, S.J., & Calabrese Barton, A. (2009). Critical physics agency: further unraveling the intersections of subject matter knowledge, learning, and taking action. Cultural Studies of Science Education, 4, 387–392. https://doi.org/10.1007/s11422-008-9155-4
Boaler, J., & Greeno, J. G. (2000). Identity, agency, and knowing in mathematics worlds. In J. Boaler (Ed.), Multiple perspectives on mathematics teaching and learning (pp. 45–82). Ablex.
Blumer, H. (1954). What is wrong with social theory? American Sociological Review, 19(1), 3–10. https://doi.org/10.2307/2088165
Cai J., Hwang S., Jiang C., & Silber S. (2015). Problem-posing research in mathematics education: Some answered and unanswered questions. In F. F. Singer, N. Ellerton & J. Cai (Eds.), Mathematical Problem Posing. Research in Mathematics Education (pp. 3–34). Springer. https://doi.org/10.1007/978-1-4614-6258-3_1
Cobb, P., Gresalfi, M., & Hodge, L. L. (2009). An interpretive scheme for analyzing the identities that students develop in mathematics classrooms. Journal for Research in Mathematics Education, 40(1), 40–68. http://www.jstor.org/stable/40539320
Cohen, E. G., & Lotan, R. A. (2014). Designing groupwork: Strategies for the heterogeneous classroom. Teachers College Press.
Damşa, C. I., Kirschner, P. A., Andriessen, J. E., Erkens, G., & Sins, P. H. (2010). Shared epistemic agency: An empirical study of an emergent construct. The Journal of the Learning Sciences, 19(2), 143–186. https://doi.org/10.1080/10508401003708381
Davies, B., & Harré, R. (1990). Positioning: The discursive production of selves. Journal for the Theory of Social Behaviour, 20(1), 43–63. https://doi.org/10.1111/j.1468-5914.1990.tb00174.x
Dunleavy, T. (2018). High school algebra students busting the myth about mathematical smartness: Counterstories to the dominant narrative “get it quick and get it right.” Education Sciences, 8(2). https://doi.org/10.3390/educsci8020058
Dyer, E. B. (2016). Learning through teaching: An exploration of teachers’ use of everyday classroom experiences as feedback to develop responsive teaching in mathematics [Dissertation, Northwestern University]. http://gradworks.umi.com/10/16/10160667.html
Dyer, E. B., & Sherin, M. G. (2016). Instructional reasoning about interpretations of student thinking that supports responsive teaching in secondary mathematics. ZDM, 48(1–2), 69–82. https://doi.org/10.1007/s11858-015-0740-1
Ehrenfeld, N. & Heyd-Metzuyanim, E. (2019). Intellective identities in the construction of a hybrid discourse: The case of an ultra-orthodox Jewish mathematics classroom. International Journal of Science and Mathematics Education, 17, 739-757. https://doi.org/10.1007/s10763-018-9885-z
Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary engagement: Explaining an emergent argument in a community of learners classroom. Cognition and Instruction, 20(4), 399–483. https://doi.org/10.1207/S1532690XCI2004_1
Engle, R. A., Langer-Osuna, J. M., & de Royston, M. M. (2014). Toward a model of influence in persuasive discussions: Negotiating quality, authority, privilege, and access within a student-led argument. Journal of the Learning Sciences, 23(2), 245-268. https://doi.org/10.1080/10508406.2014.883979
Esmonde, I. (2009). Ideas and identities: Supporting equity in cooperative mathematics learning. Review of Educational Research, 79(2), 1008-1043. https://doi.org/10.3102/0034654309332562
Esmonde, I., & Langer-Osuna, J. (2013). Power in numbers: Student participation in mathematical discussions in heterogeneous spaces. Journal for Research in Mathematics Education, 44(1), 288–315. https://doi.org/10.5951/jresematheduc.44.1.0288
Fendel, D., Resek, D., Alper, L., & Fraser, S. (2011). Interactive Mathematics Program: Integrated High School Mathematics, Year 3 (2nd edition). Key Curriculum Press.
Fendel, D., Resek, D., Alper, L., & Fraser, S. (2012). Interactive Mathematics Program: Integrated High School Mathematics, Year 4 (2nd edition). Key Curriculum Press.
Forman, E. A., Ford, M. J. (2014). Authority and accountability in light of disciplinary practices in science. International Journal of Educational Research, 64, 199-210. https://doi.org/10.1016/j.ijer.2013.07.009
Fu, G., & Clarke, A. (2020). Moving beyond the agency-structure dialectic in pre-collegiate science education: Positionality, engagement, and emergence. Studies in Science Education, 55(2), 215-256. https://doi.org/10.1080/03057267.2020.1735756
González, G., & DeJarnette, A. F. (2015). Teachers’ and students’ negotiation moves when teachers scaffold group work. Cognition and Instruction, 33(1), 1–45. https://doi.org/10.1080/07370008.2014.987058
Ha, H., & Kim, H. B. (2021). Framing oneself and one another as collaborative contributors in small group argumentation in a science classroom. International Journal of Science and Mathematics Education 19, 517–537. https://doi.org/10.1007/s10763-020-10071-z
Hanna, G. (2000). Proof, explanation, and exploration: An overview. Educational Studies in Mathematics, 44, 5-23. https://doi.org/10.1023/A:1012737223465
Harel, G. (2001). The development of mathematical induction as a proof scheme: A model for DNR-based instruction. In S. Campbell & R. Zazkis (Eds.), Learning and Teaching Number Theory. In C. Maher (Ed.), Journal of Mathematical Behavior (pp. 185–212). Ablex.
Headrick, L., Wiezel, A., Tarr, G., Zhang, X., Cullicott, C. E., Middleton, J. A., & Jansen, A. (2020). Engagement and affect patterns in high school mathematics classrooms that exhibit spontaneous problem posing: an exploratory framework and study. Educational Studies in Mathematics, 105(3), 435–456. https://doi.org/10.1007/s10649-020-09996-7
Herbel-Eisenmann, B. A., Meaney, T., Pierson Bishop, J., & Heyd-Metzuyanim, E. (2017). Highlighting heritages and building tasks: A critical analysis of mathematics classroom discourse literature. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 722–765). National Council of Teachers of Mathematics.
Johnson, D. W., & Johnson, R. T. (1999). Making cooperative learning work. Theory Into Practice, 38(2), 67–73. https://doi.org/10.1080/00405849909543834
Keifert, D., & Stevens, R. (2019). Inquiry as a members’ phenomenon: Young children as competent inquirers. Journal of the Learning Sciences, 28(2), 240–278. https://doi.org/10.1080/10508406.2018.1528448
Ko, M.-L. M., & Krist, C. (2019). Opening up curricula to redistribute epistemic agency: A framework for supporting science teaching. Science Education, 103(4), 979–1010. https://doi.org/10.1002/sce.21511
Koichu, B., Parasha, R., & Tabach, M. (2021). Who-Is-Right tasks as a means for supporting collective looking-back practices. ZDM Mathematics Education. https://doi.org/10.1007/s11858-021-01264-z
Kontorovich, I., Koichua, B., Leikinb, R., & Berman, A. (2012). An exploratory framework for handling the complexity of mathematical problem posing in small groups. The Journal of Mathematical Behavior, 31(1), 149–161. https://doi.org/10.1016/j.jmathb.2011.11.002
Kotsopoulos, D. (2014). The case of Mitchell’s cube: Interactive and reflexive positioning during collaborative learning in mathematics. Mind, Culture, and Activity, 21, 34-52. https://doi.org/10.1080/10749039.2013.790905
Langer-Osuna, J. M. (2016). The social construction of authority among peers and Its implications for collaborative mathematics problem solving. Mathematical Thinking and Learning, 18(2), 107–124. https://doi.org/10.1080/10986065.2016.1148529
Langer-Osuna, J. M. (2017). Authority, identity, and collaborative mathematics. Journal of Research in Mathematics Education, 48(3), 237–247. https://doi.org/10.5951/jresematheduc.48.3.0237
Laursen, S.L., & Rasmussen, C. (2019). I on the prize: Inquiry approaches in undergraduate mathematics. International Journal of Research in Undergraduate Mathematics Education, 5(1), 129–146. https://doi.org/10.1007/s40753-019-00085-6
Lerman, S. (2012). Agency and identity: Mathematics teachers’ stories of overcoming disadvantage. In T.-Y. Tso (Ed.), Proceedings of the 36th conference of the International Group for the Psychology of Mathematics Education (pp. 99–106). Taipei: PME.
Lo, M. & Ruef, J. (2020). Student or teacher? A look at how students facilitate public sensemaking during collaborative groupwork. Journal of Urban Mathematics Education, 13(1), 15–33. https://doi.org/10.21423/jume-v13i1a372
Louie, N. (2020). Agency discourse and the reproduction of hierarchy in mathematics instruction. Cognition and Instruction, 38(1), 1-26. https://doi.org/10.1080/07370008.2019.1677664
Mercer, N., & Dawes, L. (2008). The value of exploratory talk. In N. Mercer & S. Hodgkinson (Eds.) Exploring Talk in School: Inspired by the work of Douglas Barnes, (pp. 55–71). SAGE Publications Ltd. https://doi.org/10.4135/9781446279526.n4
Miller, E., Manz, E., Russ, R., Stroupe, D., & Berland, L. (2018). Addressing the epistemic elephant in the room: Epistemic agency and the next generation science standards. Journal of Research in Science Teaching, 55(7), 1053-1075. https://doi.org/10.1002/tea.21459
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Author.
National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state standards for mathematics. Authors.
Piaget, J. (1948/1973). To understand is to invent: The future of education. Grossman Publishers.
Regier, P., & Savic, M. (2020). How teaching to foster mathematical creativity may impact student self-efficacy for proving. Journal of Mathematical Behavior, 57, Article 100720. https://doi.org/10.1016/j.jmathb.2019.100720
Rummel, N., & Spada, H. (2005). Learning to collaborate: An instructional approach to promoting collaborative problem-solving in computer-mediated settings. The Journal of the Learning Sciences, 14(2), 201–241. https://doi.org/10.1207/s15327809jls1402_2
Schindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solving: A case study. Educational Studies in Mathematics, 105, 303-324. https://doi.org/10.1007/s10649-020-09973-0
Shim, S. Y., & Kim, H. B. (2018). Framing negotiation: Dynamics of epistemological and positional framing in small groups during scientific modeling. Science Education, 102, 128–152. https://doi.org/10.1002/sce.21306
Smith, E., & Confrey, J. (1991, April). Understanding collaborative learning: Small group work on contextual problems using a multi-representational software tool. A paper presented at the Annual Meeting of the American Educational Research Association. Chicago.
Strauss, A., & Corbin, J. M. (1990). Basics of qualitative research. Sage Publications, Inc.
Stroupe, D. (2014). Examining classroom science practice communities: How teachers and students negotiate epistemic agency and learn science-as-practice. Science Education, 98(3), 487–516. https://doi.org/10.1002/sce.21112
van de Sande, C. C., & Greeno, J. G. (2012). Achieving alignment of perspectival framings in problem-solving discourse. Journal of the Learning Sciences, 21(1), 1-44. https://doi.org/10.1080/10508406.2011.639000
Vogel, R. (2013). Mathematical situations of play and exploration. Educational Studies in Mathematics, 84(2), 209-225. https://doi.org/10.1007/s10649-013-9504-4
Volet, S., Summers, M., & Thurman, J. (2009). High-level co-regulation in collaborative learning: How does it emerge and how is it sustained? Learning and Instruction, 19(2), 128 143. https://doi.org/10.1016/j.learninstruc.2008.03.001
Webb, N. (1982). Group composition, group interaction, and achievement in cooperative small groups. Journal of Educational Psychology,74(4), 475-484. https://doi.org/10.1037/0022-0663.74.4.475
Wood, M. B. (2013). Mathematical micro-identities: Moment-to-moment positioning and learning in a fourth-grade classroom. Journal for Research in Mathematics Education, 44(5), 775. https://doi.org/10.5951/jresematheduc.44.5.0775
Wood, M. B. (2016). Rituals and right answers: Barriers and supports to autonomous activity. Educational Studies in Mathematics 91, 327-348. https://doi.org/10.1007/s10649-015-9653-8
Yackel, E. & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal of Research in Mathematics Education, 27(4), 458-477. https://doi.org/10.5951/jresematheduc.27.4.0458
Acknowledgements
This material is based upon work supported by the National Science Foundation (DRL-1920796).
Funding
National Science Foundation, DRL-1920796, Christina Krist.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare no competing interests
Disclaimer
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Parr, E.D., Dyer, E.B., Machaka, N. et al. Understanding Joint Exploration: the Epistemic Positioning Underlying Collaborative Activity in a Secondary Mathematics Classroom. Can. J. Sci. Math. Techn. Educ. 23, 479–496 (2023). https://doi.org/10.1007/s42330-023-00295-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42330-023-00295-w

