Skip to main content

Advertisement

Log in

Instructional Practices, Students’ Self-Efficacy and Math Achievement: a Multi-level Factor Score Path Analysis

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

Two prominent factors that have been linked to students’ mathematics achievement are teachers’ instructional practices and students’ self-efficacy. However, these factors are typically considered in isolation, negating the relationship between the two. This study examined the effect of two instructional practices, direct instruction and inquiry learning, on elementary students’ mathematics achievement, and how students’ self-efficacy beliefs mediate this relationship. The study further investigated whether such relationships are moderated by students’ Individual Education Plan (IEP) status. Data from standardized math tests administered to grade 6 students and questionnaires administered to students and teachers were analyzed in a multilevel factor score path analysis. Results demonstrated an indirect effect of instructional practice on math achievement through its influence on students’ self-efficacy. Specifically, inquiry learning was positively associated with students’ self-efficacy, whereas direct instruction was negatively associated with self-efficacy. Further, results showed a direct effect of inquiry learning on math achievement, but only for students with IEPs.

Résumé

Les pratiques pédagogiques des enseignants et l’efficacité personnelle des élèves représentent deux facteurs notables liés à la réussite des élèves en mathématiques. Ces facteurs sont toutefois généralement abordés en vase clos, sans tenir compte de la relation qui les associe l’un à l’autre. Dans cette étude, nous examinons les effets de deux pratiques éducatives, l’enseignement direct et l’apprentissage fondé sur la recherche sur la réussite des élèves du primaire en mathématiques et tentons de savoir comment les croyances des élèves à l’égard de leur efficacité personnelle atténuent cette relation. L’étude a aussi cherché à déterminer si ces relations sont affectées par l’état du plan d’enseignement individualisé (PEI) des élèves. Des épreuves normalisées en mathématiques furent administrées aux élèves de sixième année et des questionnaires ont été distribués aux élèves ainsi qu’aux enseignants. Les données recueillies furent l’objet d’une analyse factorielle multiniveaux des pistes causales. Les résultats indiquent que la pratique pédagogique agit indirectement sur la réussite en mathématiques par l’influence qu’elle exerce sur l’efficacité personnelle des élèves. Plus précisément, une corrélation positive a été établie entre l’apprentissage fondé sur la recherche et l’efficacité personnelle des élèves, alors qu’une corrélation négative a été constatée entre l’enseignement direct et l’efficacité personnelle. De plus, les résultats indiquent que l’apprentissage fondé sur la recherche a une incidence directe sur la réussite en mathématiques, mais uniquement chez les élèves ayant un PEI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams, G. L., & Engelmann, S. (1996). Research on direct instruction: 25 years beyond DISTAR. Educational Achievement Systems.

  • Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 1–18.

    Google Scholar 

  • Ayotola, A., & Adedeji, T. (2009). The relationship between mathematics self-efficacy and achievement in mathematics. Procedia-Social and Behavioral Sciences, 1(1), 953-957. https://doi.org/10.1016/j.sbspro.2009.01.169

    Article  Google Scholar 

  • Baker, S., Gersten, R., & Lee, D. S. (2002). A synthesis of empirical research on teaching mathematics to low-achieving students. The Elementary School Journal, 103(1), 51–73.

    Google Scholar 

  • Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review, 84(2), 191–215

    Google Scholar 

  • Bandura, A. (1986). Fearful expectations and avoidant actions as coeffects of perceived self-inefficacy. American Psychologist, 41(12), 1389–1391.

    Google Scholar 

  • Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: Freeman.

    Google Scholar 

  • Beauducel, A., & Herzberg, P. Y. (2006). On the performance of maximum likelihood versus means and variance adjusted weighted least squares estimation in CFA. Structural Equation Modeling, 13(2), 186–203.

    Google Scholar 

  • Behrend, J. L. (2003). Learning-disabled students make sense of mathematics. Teaching Children Mathematics, 9(5), 269–274.

    Google Scholar 

  • Bentler, P. M., & Yuan, K. H. (2000). On adding a mean structure to a covariance structure model. Educational and Psychological Measurement, 60(3), 326-339. https://doi.org/10.1177/00131640021970574

    Article  Google Scholar 

  • Bevel, R. K. (2010). The effects of academic optimism on student academic achievement in Alabama (3409002). [Doctoral dissertation, University of Alabama]. ProQuest Dissertations Publishing.

  • Bottge, B. A., Rueda, E., Grant, T. S., Stephens, A. C., & Laroque, P. T. (2010). Anchoring problem-solving and computation instruction in context-rich learning environments. Exceptional Children, 76(4), 417–437.

    Google Scholar 

  • Bottge, B. A., Toland, M. D., Gassaway, L., Butler, M., Choo, S., Griffen, A. K., & Ma, X. (2015). Impact of enhanced anchored instruction in inclusive math classrooms. Exceptional Children, 81(2), 158–175.

    Google Scholar 

  • Boaler, J. (1997). Experiencing school mathematics: Teaching styles, sex and setting. Buckingham: Open University Press.

    Google Scholar 

  • Boaler, J. (1998). Open and closed mathematics: Student experiences and understandings. Journal for Research in Mathematics Education, 29(1), 41–62.

    Google Scholar 

  • Boaler, J. (2016). Designing mathematics classes to promote equity and engagement. Journal of Mathematical Behavior, 100(41), 172–178.

    Google Scholar 

  • Boaler, J., & Staples, M. (2008). Creating mathematical futures through an equitable teaching approach: The case of Railside School. Teachers College Record, 110(3), 608–645.

    Google Scholar 

  • Bong, M. (1997). Generality of academic self-efficacy judgments: Evidence of hierarchical relations. Journal of Educational Psychology, 89(4), 696.

    Google Scholar 

  • Bong, M., & Clark, R. E. (1999). Comparison between self-concept and self-efficacy in academic motivation research. Educational Psychologist, 34(3), 139–153.

    Google Scholar 

  • Bong, M., & Skaalvik, E. M. (2003). Academic self-concept and self-efficacy: How different are they really?. Educational Psychology Review, 15(1), 1–40.

    Google Scholar 

  • Carnine, D. (1997). Instructional design in mathematics for students with learning disabilities. Journal of Learning Disabilities, 30(2), 130–141.

    Google Scholar 

  • Chick, C., Tierney, C., & Storeygard, J. (2007). Seeing students' knowledge of fractions: Candace's inclusive classroom. Teaching Children Mathematics, 14(1), 52–57.

    Google Scholar 

  • Clements, D. H., Agodini, R., & Harris, B. (2013). Instructional Practices and Student Math Achievement: Correlations from a Study of Math Curricula. NCEE Evaluation Brief. NCEE 2013–4020. National Center for Education Evaluation and Regional Assistance.

  • Clements, D. H., & Battista, M. T. (1990). Constructivist learning and teaching. Arithmetic Teacher, 38(1), 34–35.

    Google Scholar 

  • Cheema, J. R., & Galluzzo, G. (2013). Analyzing the gender gap in math achievement: Evidence from a large-scale US sample. Research in Education, 90(1), 98–112.

    Google Scholar 

  • Cohen, J. (2018). Practices that cross disciplines?: Revisiting explicit instruction in elementary mathematics and English language arts. Teaching and Teacher Education: An International Journal of Research and Studies, 69(1), 324–335.

    Google Scholar 

  • Coughlin, C. (2014). Outcomes of Engelmann’s Direct Instruction: Research syntheses. In Stockard, J. (Ed.), The science and success of Engelmann’s Direct Instruction (pp. 25–54). Eugene, OR: NIFDI Press.

    Google Scholar 

  • Croon, M. (2002). Using predicted latent scores in general latent structure models. In Marcoulides, G., Moustaki, I. (Eds.), Latent variable and latent structure modeling (pp. 195–223). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Dennis, M. S., Sharp, E., Chovanes, J., Thomas, A., Burns, R. M., Custer, B., & Park, J. (2016). A meta‐analysis of empirical research on teaching students with mathematics learning difficulties. Learning Disabilities Research & Practice, 31(3), 156–168.

    Google Scholar 

  • Dick, W. (1991). An instructional designer’s view of constructivism. Educational Technology, 31(5), 41–44.

    Google Scholar 

  • Doabler, C. T., Baker, S. K., Kosty, D. B., Smolkowski, K., Clarke, B., Miller, S. J., & Fien, H. (2015). Examining the association between explicit mathematics instruction and student mathematics achievement. The Elementary School Journal, 115(3), 303–333.

    Google Scholar 

  • Eccles, J. S., & Roeser, R. W. (2009). Schools, academic motivation, and stage-environment fit. In R. M. Lerner & L. Steinberg (Eds.), Handbook of adolescent psychology: Individual bases of adolescent development (p. 404–434). Hoboken, NJ: John Wiley & Sons Inc.

    Google Scholar 

  • EQAO. (2017). EQAO’s Technical Report for the 2016–2017 Assessments. Queen’s Printer for Ontario.

  • Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: a meta-analysis. Psychological bulletin, 136(1), 103.

    Google Scholar 

  • Fast, L. A., Lewis, J. L., Bryant, M. J., Bocian, K. A., Cardullo, R. A., Rettig, M., & Hammond, K. A. (2010). Does math self-efficacy mediate the effect of the perceived classroom environment on standardized math test performance?. Journal of Educational Psychology, 102(3), 729–740.

    Google Scholar 

  • Fencl, H., & Scheel, K. (2005). Engaging students: An examination of the effects of teaching strategies on self-efficacy and course climate in a nonmajors physics course. Journal of College Science Teaching, 35(1), 20-24.

    Google Scholar 

  • Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410–8415.

    Google Scholar 

  • Fuchs, L. S., Fuchs, D., Finelli, R., Courey, S. J., Hamlett, C. L., Sones, E. M., & Hope, S. K. (2006). Teaching third graders about real-life mathematical problem solving: A randomized controlled study. The Elementary School Journal, 106(4), 293–311.

    Google Scholar 

  • Guarino, C. M., Hamilton, L. S., Lockwood, J. R., Rathbun, A. H., & Hausken, E. (2006). Teacher qualifications, instructional practices, and reading and mathematics gains of kindergartners (NCES 2006–031). US Department of Education. Washington, DC: National Center for Education Statistics.

  • Gersten, R., Chard, D. J., Jayanthi, M., Baker, S. K., Morphy, P., & Flojo, J. (2009). Mathematics instruction for students with learning disabilities: A meta-analysis of instructional components. Review of Educational Research, 79(3), 1202–1242.

    Google Scholar 

  • Gersten, R., Darch, C., Gleason, M. (1988). Effectiveness of a direct instruction academic kindergarten for low-income students. The Elementary School Journal, 89(2), 227–240.

    Google Scholar 

  • Gersten, R., Ferrini-Mundy, J., Benbow, C., Clements, D. H., Loveless, T., Williams, V., & Banfield, M. (2008). Report of the task group on instructional practices. Washington, DC: US Department of Education.

    Google Scholar 

  • Gersten, R., Keating, T., Becker, W. (1988). The continued impact of the Direct Instruction model: Longitudinal studies of Follow Through students Education and Treatment of Children11(4) 318–327.

  • Hackett, G. (1985). Role of mathematics self-efficacy in the choice of math-related majors of college women and men: A path analysis. Journal of Counseling Psychology, 32(1), 47–56.

    Google Scholar 

  • Hann, T. (2020). Investigating the impact of teacher practices and noncognitive factors on mathematics achievement. Research in Education, 108(1), 22–45.

    Google Scholar 

  • Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. New York, NY: Routledge.

    Google Scholar 

  • Hickey, D. T., Moore, A. L., & Pellegrino, J. W. (2001). The motivational and academic consequences of elementary mathematics environments: Do constructivist innovations and reforms make a difference?. American Educational Research Journal, 38(3), 611–652.

    Google Scholar 

  • Hoffman, B., & Schraw, G. (2009). The influence of self-efficacy and working memory capacity on problem-solving efficiency. Learning and Individual Differences, 19(1), 91–100.

    Google Scholar 

  • Hopkins, K. B., V. McGillicuddy-De Lisi, A., & Lisi, R. D. (1997). Student gender and teaching methods as sources of variability in children's computational arithmetic performance. The Journal of Genetic Psychology, 158(3), 333–345.

    Google Scholar 

  • Jack, B. M., & Lin, H. (2014). Igniting and sustaining interest among students who have grown cold toward science. Science Education, 98(5), 792–814.

    Google Scholar 

  • Jansen, B. R., Louwerse, J., Straatemeier, M., Van der Ven, S. H., Klinkenberg, S., & Van der Maas, H. L. (2013). The influence of experiencing success in math on math anxiety, perceived math competence, and math performance. Learning and Individual Differences, 24, 190–197.

    Google Scholar 

  • Jerusalem, M., & Mittag, W. (1995). Self-efficacy in stressful life transitions. In A. Bandura (Ed.), Self-efficacy in changing societies, (pp. 177-201). Cambridge University Press. https://doi.org/10.1017/CBO9780511527692.008

  • Jones, E. D., Wilson, R., & Bhojwani, S. (1997). Mathematics instruction for secondary students with learning disabilities. Journal of Learning Disabilities, 30(2), 151–163.

    Google Scholar 

  • Jungert, T., & Andersson, U. (2013). Self-efficacy beliefs in mathematics, native language literacy and foreign language amongst boys and girls with and without mathematic difficulties. Scandinavian Journal of Educational Research, 57(1), 1–15.

    Google Scholar 

  • Klassen, R. M. (2010). Confidence to manage learning: The self-efficacy for self-regulated learning of early adolescents with learning disabilities. Learning Disability Quarterly, 33(1), 19–30.

    Google Scholar 

  • Kramarski, B., & Dudai, V. (2009). Group-metacognitive support for online inquiry in mathematics with differential self-questioning. Journal of Educational Computing Research, 40(4), 377–404.

    Google Scholar 

  • Kroesbergen, E. H., & Van Luit, J. E. (2003). Mathematics interventions for children with special educational needs: A meta-analysis. Remedial and Special Education, 24(2), 97–114.

    Google Scholar 

  • Lackaye, T., Margalit, M., Ziv, O., & Ziman, T. (2006). Comparisons of self‐efficacy, mood, effort, and hope between students with learning disabilities and their non‐LD‐matched peers. Learning Disabilities Research & Practice, 21(2), 111–121.

    Google Scholar 

  • Lambert, R. (2018). “Indefensible, illogical, and unsupported”; countering deficit mythologies about the potential of students with learning disabilities in mathematics. Education Sciences, 8(2), 72.

    Google Scholar 

  • Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: Effects of guidance. Review of Educational Research, 86(3), 681–718.

    Google Scholar 

  • Lee, V. S., Greene, D. B., Odom, J., Schechter, E., & Slatta, R. W. (2004). What is inquiry-guided learning. In V. S. Lee (Ed.), Teaching and learning through inquiry: A guidebook for institutions and instructors (pp. 3–15). Sterling, VA: Stylus Publishing.

    Google Scholar 

  • Lent, R. W., Lopez, F. G., & Bieschke, K. J. (1993). Predicting mathematics-related choice and success behaviors: Test of an expanded social cognitive model. Journal of Vocational Behavior, 42(2), 223–236.

    Google Scholar 

  • Louis, R. A., & Mistele, J. M. (2012). The differences in scores and self-efficacy by student gender in mathematics and science. International Journal of Science and Mathematics Education, 10(5), 1163–1190.

    Google Scholar 

  • Lüdtke, O., Marsh, H. W., Robitzsch, A., & Trautwein, U. (2011). A 2 x 2 taxonomy of multilevel latent contextual models: Accuracy-bias tradeoffs in full and partial error correction models. Psychological Methods, 16, 444–467.

    Google Scholar 

  • Lussier, G. (1996). Sex and mathematical background as predictors of anxiety and self-efficacy in mathematics. Psychological Reports, 79(3), 827–833.

    Google Scholar 

  • Marsh, H. W., Walker, R., & Debus, R. (1991). Subject-specific components of academic self-concept and self-efficacy. Contemporary Educational Psychology, 16(4), 331–345.

    Google Scholar 

  • Meinck, S., & Brese, F. (2019). Trends in gender gaps: using 20 years of evidence from TIMSS. Large-scale Assessments in Education, 7(1), 1–23.

    Google Scholar 

  • Meyer, L. A. (1984). Long-term academic effects of the Direct Instruction Project Follow Through. The Elementary School Journal, 84, 380–394.

    Google Scholar 

  • Morgan, P. L., Farkas, G., & Maczuga, S. (2015). Which instructional practices most help first-grade students with and without mathematics difficulties?. Educational Evaluation and Policy Analysis, 37(2), 184–205.

    Google Scholar 

  • Morin, A. J., Marsh, H. W., Nagengast, B., & Scalas, L. F. (2014). Doubly latent multilevel analyses of classroom climate: An illustration. The Journal of Experimental Education, 82(2), 143–167.

    Google Scholar 

  • Moscardini, L. (2010). ‘I like it instead of maths’: how pupils with moderate learning difficulties in Scottish primary special schools intuitively solved mathematical word problems. British Journal of Special Education, 37(3), 130–138.

    Google Scholar 

  • Muthén, L. K., & Muthén, B. O. (1998 –2020). Mplus user’s guide (7th ed.). Los Angeles, CA: Muthén & Muthén.

  • Muthén, L. K., & Muthén, B. (2011). Multilevel modeling with latent variables using Mplus: Cross-sectional analysis. Retrieved from https://www.statmodel.com/topic7/shtml

  • Muthukrishna, N., & Borkowski, J. G. (1995). How learning contexts facilitate strategy transfer. Applied Cognitive Psychology, 9(5), 425–446.

    Google Scholar 

  • O'brien, V., Martinez-Pons, M., & Kopala, M. (1999). Mathematics self-efficacy, ethnic identity, gender, and career interests related to mathematics and science. The Journal of Educational Research, 92(4), 231–235.

    Google Scholar 

  • OECD. (2014). PISA. Are boys and girls equally prepared for life? Retrieved from http://www.oecd.org/pisa/pisaproducts/PIF-2014-gender-international-version.pdf

  • OECD. (2019). PISA 2018 Results (Volume I): What Students Know and Can Do. PISA, OECD Publishing, Paris.

    Google Scholar 

  • Ontario Ministry of Education. (2004). Individual Education Plan (IEP): Resource Guide. Retrieved from http://www.edu.gov.on.ca/eng/general/elemsec/speced/guide/resource/iepresguid.pdf

  • Ontario Ministry of Education. (2013). An Introduction to Special Education in Ontario. Retrieved from http://www.edu.gov.on.ca/eng/general/elemsec/speced/ontario.html

  • Ontario Ministry of Education. (2017). Special Education in Ontario Kindergarten to Grade 12: Policy and Resource Guide. Retrieved from https://www.edu.gov.on.ca/eng/document/policy/os/onschools_2017e.pdf

  • Pajares, F. (1996). Self-efficacy beliefs in academic settings. Review of Educational Research, 66(4), 543–578.

    Google Scholar 

  • Pajares, F., & Kranzler, J. (1995). Self-efficacy beliefs and general mental ability in mathematical problem-solving. Contemporary Educational Psychology, 20, 426–426.

    Google Scholar 

  • Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and self-concept beliefs in mathematical problem solving: A path analysis. Journal of Educational Psychology, 86(2), 193–203.

    Google Scholar 

  • Pajares, F., & Miller, M. D. (1995). Mathematics self-efficacy and mathematics performances: The need for specificity of assessment. Journal of Counseling Psychology, 42(2), 190-198. https://doi.org/10.1037/0022-0167.42.2.190

    Article  Google Scholar 

  • Reilly, D., Neumann, D. L., & Andrews, G. (2019). Gender differences in reading and writing achievement: Evidence from the National Assessment of Educational Progress (NAEP). American Psychologist, 74(4), 445.

    Google Scholar 

  • Rice, J. (2018). Exploring the role of mindset in shaping student perceptions of inquiry based instruction in mathematics. Research Proceedings of BCME9, 151–158.

  • Rittle‐Johnson, B. (2006). Promoting transfer: Effects of self‐explanation and direct instruction. Child Development, 77(1), 1–15.

    Google Scholar 

  • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: applications and data analysis methods (2nd ed). Thousand Oaks: Sage Publications.

    Google Scholar 

  • Schunk, D. H. (1991). Self-efficacy and academic motivation. Educational psychologist, 26(3-4), 207–231.

    Google Scholar 

  • Schunk, D. H., & Meece, J. L. (2006). Self-efficacy development in adolescence. In F. Pajares & T. Urdan (Eds.), Self-efficacy beliefs of adolescents, (pp. 71-96). Information Age Publishing.

  • Schwartzer, R. (1992). Self-efficacy. Thought control of action. Washington, DC: Hemisphere.

    Google Scholar 

  • Staub, F. C., & Stern, E. (2002). The nature of teachers' pedagogical content beliefs matters for students' achievement gains: Quasi-experimental evidence from elementary mathematics. Journal of Educational Psychology, 94(2), 344.

    Google Scholar 

  • Stipek, D. (1996). Motivation and instruction. In D. Berliner & R. Calfee (Eds.), Handbook of educational psychology (pp. 85-113). New York, NY: Macmillan.

    Google Scholar 

  • Stockard, J. (2011). Direct Instruction and first grade reading achievement: The role of technical support and time of implementation. Journal of Direct Instruction, 11, 31–50.

    Google Scholar 

  • Sturman, L., & Ruddock, G. (2009). Messages from TIMSS 2007. Reading, United Kingdom: Association for Science Education Annual Conference.

  • Sun, K. L. (2018). Brief Report: The Role of Mathematics Teaching in Fostering Student Growth Mindset. Journal for Research in Mathematics Education, 49(3), 330–335.

    Google Scholar 

  • Wickstrom, H., Fesseha, E., & Jang, E. E. (2020). Examining the relation between IEP status, testing accommodations, and elementary students’ EQAO mathematics achievement. Canadian Journal of Science, Mathematics, and Technology Education, 20(2), 10–1007.

    Google Scholar 

  • Wigfield, A., Eccles, J. S., MacIver, D., Reuman, D. A., & Midgley, C. (1991). Transitions at Early Adolescence: Changes in Children’s Domain-Specific Self-Perceptions and General Self-Esteem across the Transition to Junior High School. Developmental Psychology, 27, 552–565.

    Google Scholar 

  • Zimmerman, B. J. (2000). Self-efficacy: An essential motive to learn. Contemporary Educational Psychology, 25, 82–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole E. Larsen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larsen, N.E., Jang, E.E. Instructional Practices, Students’ Self-Efficacy and Math Achievement: a Multi-level Factor Score Path Analysis. Can. J. Sci. Math. Techn. Educ. 21, 803–823 (2021). https://doi.org/10.1007/s42330-021-00181-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42330-021-00181-3

Keywords

Navigation