Skip to main content
Log in

Teachers’ Noticing of Students’ Slope Statements: Attending and Interpreting

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

In this study, we investigate a sample of in-service teachers’ professional noticing of slope. The analysis focuses on which elements of students’ statements about slope teachers attend to, and how teachers interpreted those elements. Study results suggest that teachers attended to the vocabulary and mathematical focus of students’ statements. Teachers’ interpretations were, for the most part, rather consistent across teachers and in line with the researchers’ anticipations for elicited slope components. In fact, even for vague student statements expected to elicit a variety of interpretations by teachers, there was a noted lack of diversity in teachers’ interpretations. Results for teachers’ interpretations suggest they place great academic value on nonvisual slope reasoning and attribute the ability to solve real-world problems to students who used “rate of change” terminology. Other real-world interpretations of slope were interpreted as disconnected from the mathematical meaning of slope or only trivially linked to contextual situations. Findings from this study imply that teachers should be provided with professional development opportunities involving slope. Specifically, teachers need experiences interacting with tasks that build robust notions of steepness through explicit connections to a variety of physical contexts by allowing students to develop imagery and mathematical terminology in rich and meaningful ways. In addition, professional development should help uncover the meaning behind students’ vocabulary rather than having them focus on buzz words and catch phrases, which may be used without understanding.

Résumé

Dans cette étude, nous examinons un échantillon d’observations professionnelles d’enseignants en poste portant sur les affirmations des élèves sur la pente. L'analyse se concentre sur les éléments des affirmations des élèves sur la pente auxquels les enseignants portent attention, et sur la façon dont les enseignants ont interprété ces éléments. Les résultats de l'étude indiquent que les enseignants ont prêté attention au vocabulaire et à l'orientation mathématique des affirmations des élèves. Les interprétations des enseignants étaient, pour la plupart, plutôt cohérentes d’un enseignant à l’autre et conformes aux prévisions des chercheurs concernant les éléments de la pente. En fait, même pour les affirmations vagues des élèves, qui auraient dû susciter une variété d'interprétations de la part des enseignants, un manque de diversité dans les interprétations des enseignants a été observé. Les résultats des interprétations des enseignants indiquent qu'ils accordent une grande valeur académique au raisonnement non visuel sur la pente et attribuent la capacité de résoudre des problèmes du monde réel aux élèves qui ont utilisé la terminologie du « taux de changement ». D'autres interprétations de la pente dans le monde réel ont été interprétées comme étant déconnectées de la signification mathématique de la pente ou seulement trivialement liées à des situations contextuelles. Les résultats de cette étude impliquent que les enseignants devraient avoir des occasions de développement professionnel concernant la pente. Plus précisément, les enseignants ont besoin d'expériences d'interaction avec des tâches qui construisent des notions solides de la pente par le biais de liens explicites avec divers contextes physiques en permettant aux élèves d’acquérir l'imagerie et la terminologie mathématique d’une manière riche et significative. De plus, le perfectionnement professionnel devrait aider à découvrir la signification du vocabulaire des élèves plutôt que de les pousser à se concentrer sur des mots à la mode et des phrases d'accroche qui peuvent être utilisés sans être compris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

  • Azcarate, C. (1992). Estudio de los esquemas conceptuales y de los perfiles de unos alumnos de segundo de BUP en relación con el concepto de pendiente de una recta [A study of the conceptual schemes and the profiles of some BUP secondary students in relation to the concept of the slope of a line]. Epsilon, 24, 9–22.

    Google Scholar 

  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407.

    Article  Google Scholar 

  • Bobis, J., Clarke, B., Clarke, D., Thomas, G., Wright, B., Young-Loveridge, J., & Gould, P. (2005). Supporting teachers in the development of young children’s mathematical thinking: Three large scale cases. Mathematics Education Research Journal, 16(3), 27-57.

    Article  Google Scholar 

  • Byerley, C., & Thompson, P.W. (2017). Secondary mathematics teachers’ meanings for measure, slope, and rate of change. Journal of Mathematical Behavior, 48, 168-193.

    Article  Google Scholar 

  • Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352–378.

    Article  Google Scholar 

  • Carpenter, T.P., Fennema, E., Peterson, P.L., Chiang, C., & Loef, M. (1989). Using knowledge of children’s mathematics thinking in classroom teaching: An experimental study. American Educational Research Journal, 26(4), 499-531.

    Article  Google Scholar 

  • Casey, S., & Nagle, C. (2016). Students’ use of slope conceptualizations when reasoning about the line of best fit. Educational Studies in Mathematics, 92(2), 163–177.

  • Casey, S., Lesseig, K., Monson, D., & Krupa, E. E. (2018). Examining preservice secondary mathematics teachers’ responses to student work to solve linear equations. Mathematics Teacher Education and Development, 20(1), 132-153.

    Google Scholar 

  • Cheng, D. S. (2010). Connecting proportionality and slope: Middle school students’ reasoning about steepness. (Unpublished doctoral dissertation). Boston University, Boston, MA.

  • Clements, D.H., Sarama, J., Spitler, M.E., Lange, A.A., & Wolfe, C.B. (2011). Mathematics learned by young children in an intervention based on learning trajectories: A large-scale cluster randomized trial. Journal for Research in Mathematics Education, 42(2), 127-166.

    Article  Google Scholar 

  • Coe, E. (2007). Modeling teachers’ ways of thinking about rate of change. (Unpublished doctoral dissertation). Arizona State University, Phoenix, AZ.

  • Doerr, H.M. (2006). Examining the tasks of teaching when using students’ mathematical thinking. Education Studies in Mathematics, 62(1), 3-24.

    Article  Google Scholar 

  • Franke, M. L., Kazemi, E., & Battery, D. (2007). Mathematics teaching and classroom practice. In F. K. Lester (Ed.), Second handbook of research in mathematics teaching and learning (Vol. 1, pp. 225-256). Charlotte: Information Age Publishing.

    Google Scholar 

  • Hattikudur, S., Prather, R. W., Asquith, P., Knuth, E., Nathan, M. J. & Alibali, M. W. (2011). Constructing graphical representations: Middle schoolers’ developing knowledge about slope and intercept. School Science and Mathematics, 112(4), 230–240.

    Article  Google Scholar 

  • Jacobs, V. R., Lamb, L. C., & Phillip, R. A. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169–202.

    Article  Google Scholar 

  • Lee, J. H. (2018). Mathematics Teacher In-the-moment Noticing: How They Use Scaffolding Practices to Support Student Thinking (Master’s Thesis, The Ohio State University). Retrieved from https://etd.ohiolink.edu/!etd.send_file?accession=osu152418154175417&disposition=inline

  • Lingefjärd, T. & Farahani, D. (2017). The elusive slope. International Journal of Science and Mathematics Education, 16(6), 1187-1206.

    Article  Google Scholar 

  • Lobato, J., & Siebert, D. (2002). Quantitative reasoning in a reconceived view of transfer. Journal of Mathematical Behavior, 21, 87–116.

    Article  Google Scholar 

  • Lobato, J. & Thanheiser, E. (2002). Developing understanding of ratio-as-measure as a foundation of slope. In B. Litwiller & G. Bright (Eds.), Making sense of fractions, ratios, and proportions (pp. 162–175). Reston: The National Council of Teachers of Mathematics.

    Google Scholar 

  • Lobato, J., Rhodehamel, B., & Hohensee, C. (2012). Noticing as an alternative transfer of learning process. Journal of the Learning Sciences, 21(3), 433–482. https://doi.org/10.1080/10508406.2012.68218.

  • McGee, D.L, & Moore-Russo, D. (2015). Impact of explicit representation of slopes in three dimensions on students’ understanding of derivatives in multivariable calculus. International Journal of Science and Mathematics Education, 13(2), 357–384.

  • Moore-Russo, D., Conner, A.M., & Rugg, K.I. (2011). Can slope be negative in 3-space? Studying concept image of slope through collective definition construction. Educational Studies in Mathematics, 76(1), 3–21.

  • Mudaly, V. & Moore-Russo, D. (2011). South African teachers’ conceptualisations of gradient: a study of historically disadvantaged teachers in an Advanced Certificate in Education programme. Pythagoras, 32(1), 1–8.

  • Nagle, C., & Moore-Russo, D. (2013). The concept of slope: Comparing teachers’ concept images and instructional content. Investigations in Mathematics Learning, 6(2), 1–18.

  • Nagle, C., & Moore-Russo, D. (2014). Slope across the curriculum: Principles and Standards for School Mathematics and Common Core State Standards. The Mathematics Educator, 23(2), 40–59.

  • Nagle, C., Moore-Russo, D., Viglietti, J. M., & Martin, K. (2013). Calculus students’ and instructors’ conceptualizations of slope: A comparison across academic levels. International Journal of Science and Mathematics Education, 11, 1491–1515.

  • Nagle, C., Casey, S., & Moore-Russo, D. (2017a). Slope and line of best fit: A transfer of knowledge case study. School Science and Mathematics, 117(1–2), 13–26.

  • Nagle, C., Moore-Russo, D., & Styers, J. (2017b). Teachers’ interpretations of student statements about slope. In E. Galindo, J. Newton (Eds.), Proceedings of the 39th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Indianapolis, Hoosier Association of Mathematics Teacher Educators, pp. 589-596.

  • Nagle, C., Casey, S., & Carney, M. (2020). Professional noticing on a statistical task. Investigations in Mathematics Learning, 12(1), 10–27.

  • Newton, X. A., & Poon, R. C. (2015). Pre-service STEM majors understanding of slope according to common core mathematics standards: An exploratory study. Global Journal of Human-Social Science Research, 15(7), 27-42.

    Google Scholar 

  • Planinic, M., Milin-Sipus, Z., Katic, H., Susac, A. & Ivanjek, L. (2012). Comparison of student understanding of line graph slope in physics and mathematics. International Journal of Science and Mathematics Education, 10, 1393–1414.

    Article  Google Scholar 

  • Rittle-Johnson, B. & Alibali, M. W. (1999). Conceptual and procedural knowledge of mathematics: does one lead to another? Journal of Educational Psychology, 91(1), 175-189.

    Article  Google Scholar 

  • Rittle-Johnson, B. & Schneider, M. (2015). Developing conceptual and procedural knowledge of mathematics. In R. Cohen Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition (pp. 1102-1118). Oxford: Oxford University Press.

    Google Scholar 

  • Schoenfeld, A. H. (2011). How we think. A theory of goal-oriented decision making and its educational applications. New York: Routledge.

    Google Scholar 

  • She, X., Matteson, S., Siwatu, K. O., & Wilhelm, J. (2014). Exploring pre-service teachers’ conceptual understanding of algebraic ideas: Linear function and slope. International Journal of Education and Social Science, 1(5), 90-101.

    Google Scholar 

  • Sherin, M.G. & van Es, E.A. (2009). Effects of video club participation on teachers’ professional vision. Journal of Teacher Education, 60(1), 20-37.

    Article  Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14.

    Article  Google Scholar 

  • Stanton, M. & Moore-Russo, D. (2012). Conceptualization of slope: A review of state standards. School Science and Mathematics, 112(5), 270–277.

  • Stump, S. (1999). Secondary mathematics teachers’ knowledge of slope. Mathematics Education Research Journal, 11, 124–144.

    Article  Google Scholar 

  • Stump, S. L. (2001a). High school precalculus students’ understanding of slope as measure. School Science and Mathematics, 101(2), 81-89.

    Article  Google Scholar 

  • Stump, S. L. (2001b). Developing preservice teachers’ pedagogical content knowledge of slope. Journal of Mathematical Behavior, 20(2), 207-227.

    Article  Google Scholar 

  • Tall, D., Gray, E., Ali, M. B., Crowley, L., DeMarois, P., McGowen, M., Pitta, D., Pinto, M, Thomas, M. & Yusof, Y. (2001). Symbols and the bifurcation between procedural and conceptual thinking. Canadian Journal of Math, Science & Technology Education, 1(1), 81-104.

    Article  Google Scholar 

  • Teuscher, D. & Reys, R. (2010). Slope, rate of change, and steepness: Do students understand these concepts? Mathematics Teacher, 103, 519–524.

    Google Scholar 

  • Teuscher, D., Leatham, K. R., & Peterson, B. E. (2017). From a framework to a lens: Learning to notice student mathematical thinking. In Teacher noticing: Bridging and broadening perspectives, contexts, and frameworks (pp. 31-48). Cham: Springer.

    Chapter  Google Scholar 

  • Thomas, J., Jong, C., Fisher, M. H., & Schack, E. O. (2017). Noticing and knowledge: Exploring theoretical connections between professional noticing and mathematical knowledge for teaching. The Mathematics Educator, 26(2). Retrieved from http://tme.journals.libs.uga.edu/index.php/tme/article/view/418/305

  • Van Zoest, L. R., Stockero, S. L., Leatham, K. R., Peterson, B. E., Atanga, N. A., & Ochieng, M. A. (2017). Attributes of instances of student mathematical thinking that are worth building on in whole-class discussion. Mathematical Thinking and Learning, 19(1), 33-54.

    Article  Google Scholar 

  • Zahner, W. (2015). The rise and run of a computational understanding of slope in a conceptually focused bilingual algebra class. Educational Studies in Mathematics, 88(1), 19-41.

    Article  Google Scholar 

  • Zandieh, M. J., & Knapp, J. (2006). Exploring the role of metonymy in mathematical understanding and reasoning: The concept of derivative as an example. Journal of Mathematical Behavior, 25(1), 1-17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Courtney R. Nagle.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Styers, J.L., Nagle, C.R. & Moore-Russo, D. Teachers’ Noticing of Students’ Slope Statements: Attending and Interpreting. Can. J. Sci. Math. Techn. Educ. 20, 504–520 (2020). https://doi.org/10.1007/s42330-020-00107-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42330-020-00107-5

Keywords

Navigation