Skip to main content
Log in

Reimagining Authentic Mathematical Tasks for Non-STEM Majors

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

While the culture of many mathematics departments inflects strongly towards STEM, most mathematics departments also offer a significant number of introductory courses intended for both STEM and non-STEM majors. We are a group of mathematicians who, in this work, examine the intent and goals of a university mathematics education for the non-STEM student. We engage in a community of inquiry to discuss how better to address the interests and experiences of our students, and conclude that centring the students’ point of view and decentring the professional mathematician’s point of view is potentially transformative in building resiliency and community. We propose a coordinate system to describe mathematical tasks, with a “contrived-authentic” axis, and a “clean-messy” axis. Finally, we elaborate on the value of the community of inquiry itself in developing our own philosophy and practice of teaching.

Résumé

Alors que la culture de nombreux départements de mathématiques se tourne de plus en plus vers les STEM, la plupart des départements de mathématiques offrent également un certain nombre de cours d'introduction destinés à la fois aux étudiants spécialisés en STEM et à ceux qui ne le sont pas. Nous sommes un groupe de mathématiciens qui, dans cette étude, examinons l'intention et les objectifs d'une formation universitaire en mathématiques à l’intention des étudiants non spécialisés en STEM. Nous participons à une communauté d'apprentissage pour traiter de la meilleure façon dont nous pouvons répondre aux intérêts et aux expériences de nos étudiants, et concluons que le fait de centrer le point de vue des étudiants, et de décentrer le point de vue des mathématiciens professionnels, peut transformer la communauté et accroitre sa résilience. Nous proposons un système de coordonnées pour décrire les tâches mathématiques, avec un axe « artificiel - authentique » et un axe « clair - désordonné ». Enfin, nous nous penchons sur la valeur de la communauté d'apprentissage en soi dans le développement de notre propre philosophie et de nos pratiques d'enseignement personnelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The quadratic sequence {8,32,72,128,...} represents the number of tiles in the starblanket as the size of the starblanket increases, as shown below:

    figure a
  2. The sum of the terms in the sequence {1,2,3,4,3,2,1} represents the number of tiles in a single leaf of the starblanket on the right (above). ED’s students generally calculate these sums, and then multiply by 8, the total number of leaves.

  3. In a follow-up discussion, ED proposed the following characterization: “messiness is proportional to the amount of time an expert [...] would have to spend to understand the situation; ‘messiness is proportional to time.’”

  4. The species of authenticity used by the community of inquiry here is what Weiss, Herbst, and Chen label AMW, or “mathematics that is rooted in real world context” (p. 276), with the novel addition that the world in question ought to be the students’ world.

References

  • Amit, M., & Abu Qouder, F. (2017). Weaving culture and mathematics in the classroom: the case of bedouin ethnomathematics. In Rosa, M., Shirley, L., Gavarrete, M., & Alangui, W. (Eds.). Ethnomathematics and its Diverse Approaches for Mathematics Education (pp. 23-50). ICME-13 Monographs. Springer, Cham.

  • Appelbaum, P., Friedler, L. M., Ortiz, C. E., & Wolff, E. F. (2009). Internationalizing the university mathematics curriculum. Journal of Studies in International Education, 13(3), 365-381.

    Google Scholar 

  • Ascher, M. (2017). Ethnomathematics: A multicultural view of mathematical ideas. Routledge.

  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.

  • Chatters, J. C. (2000). The recovery and first analysis of an early holocene human skeleton from Kennewick, Washington. American Antiquity, 65(2), 291–316.

  • Code, W., Merchant, S., Maciejewski, W., Thomas, M., & Lo, J. (2016). The Mathematics Attitudes and Perceptions Survey: an instrument to assess expert-like views and dispositions among undergraduate mathematics students. International Journal of Mathematical Education in Science and Technology, 47(6), 917–937.

    Google Scholar 

  • Davidson, N. (1990). Cooperative learning in mathematics: A handbook for teachers. Menlo Park, Calif: Addison-Wesley Publishing Co.

    Google Scholar 

  • Ernest, J. B., & Nemirovsky, R. (2016). Arguments for integrating the arts: Artistic engagement in an undergraduate foundations of geometry course. Primus, 26(4), 356–370.

    Google Scholar 

  • Ernest, P., Sriraman, B., & Ernest, N. (Eds.). (2016). Critical mathematics education: Theory, praxis and reality. IAP.

  • Goodykoontz, E. (2008). Factors that affect college students’ attitude towards mathematics. EdD Dissertation. Morgantown, WV: West Virginia University.

  • Hacker, A. (2016). The math myth: And other STEM delusions. The New Press.

  • Hackett, G., & Betz, N. E. (1989). An exploration of the mathematics self-efficacy/mathematics performance correspondence. Journal for research in Mathematics Education, 20(3), 261–273.

  • Hardin, J. S., & Horton, N. J. (2017). Ensuring that mathematics is relevant in a world of data science. Notices of the AMS, 64(9), 986–990.

    Google Scholar 

  • Hill, H., Ball, D. L., & Schilling, S. G. (2008). Unpacking “pedagogical content knowledge”: Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 20(4), 372–400.

    Google Scholar 

  • Hemmings, B., Grootenboer, P., & Kay, R. (2011). Predicting mathematics achievement: The influence of prior achievement and attitudes. International Journal of Science and Mathematics Education, 9(3), 691–705.

    Google Scholar 

  • Herbst, P., & Brach, C. (2006). Proving and doing proofs in high school geometry classes: What is it that is going on for students? Cognition and Instruction, 24(1), 73–122.

    Google Scholar 

  • Hutcheson, G. D., Pampaka, M., & Williams, J. (2011). Enrolment, achievement and retention on ‘traditional’ and ‘Use of Mathematics’ AS courses. Research in Mathematics Education, 13(2), 147–168.

    Google Scholar 

  • Jaworski, B. (2009). The practice of (University) mathematics teaching: mediational inquiry in a community of practice or an activity system. In V. Durand-Guerrier, S. Soury-Lavergne & F. Arzarello (Eds.), Proceedings of CERME, 6, 1585–1594.

  • Jaworski, B. (2014). Communities of inquiry in mathematics teacher education. In Lerman S. (Eds.), Encyclopedia of Mathematics Education. Springer, Dordrecht.

  • Johnson, D. W., Johnson, R. T., & Smith, K. A. (1991). Active learning: Cooperation in the college classroom. Edina, MN, Interaction Book Company.

    Google Scholar 

  • Karp, K.S. (1991). Elementary school teachers' attitudes toward mathematics: the impact on students' autonomous learning skills. School Science and Mathematics, 91(6), 265–270.

  • Kennedy, T. J., & Odell, M. R. L. (2014). Engaging students in STEM education. Science Education International, 25(3), 246–258.

    Google Scholar 

  • Lew, K., Fukawa-Connelly, T., Mejia-Ramos, J.P., & Weber, K. (2014). Why advanced mathematics lectures often fail. In T. Fukawa-Connelly, G. Karakok, K. Keene, & M. Zandieh (Eds.), Proceedings of the 17th Annual Conference on Research in Undergraduate Mathematics Education (pp. 137–151). Denver, Colorado: SIGMAA-RUME.

    Google Scholar 

  • McMaster, L., & Betts, P. (2007). Making school math messy: Deepening mathematical appreciation in gifted high school students. Gifted and Talented International, 22(2), 89–95.

    Google Scholar 

  • Nathan, M. J., Koedinger, K. R., & Alibali, M. W. (2001). Expert blind spot: When content knowledge eclipses pedagogical content knowledge. In Proceedings of the third international conference on cognitive science (pp. 644–648).

  • Norton, D. E., & Yackel, C. A. (2016). Introduction to the PRIMUS Special Issue on Mathematics and the Arts in the Undergraduate Classroom. PRIMUS, 26(4), 269–273.

    Google Scholar 

  • OECD. (2014). PISA 2012 results in focus: What 15 year olds know and what they can do with what they know. Paris: OECD.

    Google Scholar 

  • Royster, D. C., Kim Harris, M., & Schoeps, N. (1999). Dispositions of college mathematics students. International Journal of Mathematical Education in Science and Technology, 30(3), 317–333.

    Google Scholar 

  • Skovsmose, O. (1994). Towards a philosophy of critical mathematics education. Dordrecht, NL: Springer.

    Google Scholar 

  • Shaughnessy, J. M. (2013). Mathematics in a STEM context. Mathematics Teaching in the Middle school, 18(6), 324–324.

    Google Scholar 

  • Smith, A. (2017). Report of Professor Sir Adrian Smith’s review of post-16 mathematics. Department for Education, London.

  • Townsend, M., Moore, D., Tuck, B., & Wilton, K. (1998). Self-concept and anxiety in university students studying social science statistics within a cooperative learning structure. Educational Psychology, 18(1), 1–14.

    Google Scholar 

  • Tseng, K. H., Chang, C. C., Lou, S. J., & Chen, W. P. (2013). Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning (PjBL) environment. International Journal of Technology and Design Education, 23(1), 87–102.

    Google Scholar 

  • Uusimaki, L. & Nason, R. (2004). Causes underlying pre-service teachers’ negative beliefs and anxieties about mathematics. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 4, 369–376.

    Google Scholar 

  • Weiss, M., Herbst, P. & Chen, C. (2009). Teachers’ perspectives on “authentic mathematics” and the two-column proof form. Educational Studies in Mathematics, 70, 275–293.

    Google Scholar 

  • Westwood, P. (2011). The problem with problems: Potential difficulties in implementing problem-based learning as the core method in primary school mathematics. Australian Journal of Learning Difficulties, 16(1), 5–18.

  • Yusof, & Tall, D. (1998). Changing attitudes to university mathematics through problem solving. Educational Studies in Mathematics, 37(1), 67–82.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fok-Shuen Leung.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leung, FS., Radzimski, V. & Doolittle, E. Reimagining Authentic Mathematical Tasks for Non-STEM Majors. Can. J. Sci. Math. Techn. Educ. 20, 205–217 (2020). https://doi.org/10.1007/s42330-020-00084-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42330-020-00084-9

Keywords

Navigation