Skip to main content

Advertisement

Log in

How Does Inquiry-Based Scientific Investigation Relate to the Development of Students’ Science Knowledge, Knowing, Applying, and Reasoning? An Examination of TIMSS Data

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

The present study examined to what extent inquiry-based investigation as an instructional approach associated with students’ overall science achievement and achievement in cognitive domains, including knowing science facts, applying scientific principles, and reasoning with scientific concepts to solve problems. Using TIMSS 2007 science achievement data for the 8th graders in the USA and the corresponding student questionnaires, we found that students’ involvement in inquiry-based scientific investigation negatively related to students’ overall science achievement. As the skills involved higher cognitive abilities, from knowing to applying and reasoning, the more students were engaged in the investigation, the more their achievement scores dropped. In contrast, students’ achievement significantly related to explicit instruction and as the skills involved higher cognitive abilities, the positive significant relationship got more strengthened.

Résumé

La présente étude analyse à quel point la recherche fondée sur l’exploration et l’expérimentation comme approche pédagogique est liée aux résultats des étudiants dans les domaines scientifiques en général et à leurs résultats dans les domaines cognitifs, y compris la connaissance des faits scientifiques, l’application des principes scientifiques et le raisonnement au moyen de concepts scientifiques dans la résolution de problèmes. Nous avons utilisé des données provenant d’une enquête internationale sur les acquis scolaires (TIMSS 2007) d’élèves de 8ième année aux États-Unis, ainsi que les questionnaires étudiants correspondants, et nos résultats indiquent que la participation des étudiants aux enquêtes fondées sur l’exploration et l’expérimentation a un impact négatif sur leurs résultats scientifiques en général. Puisque les activités mettent en jeu des habiletés cognitives supérieures, soit savoir, appliquer et raisonner, plus les étudiants étaient engagés dans la recherche, et plus bas étaient leurs résultats. Au contraire, les résultats des étudiants sont liés de façon significative à l’enseignement explicite, et, à mesure que les habilités mises en jeu sont de niveau de plus en plus élevées, la relation positive significative est renforcée.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams, I., & Millar, R. (2008). Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14), 1945-1969.

    Article  Google Scholar 

  • Anyon, J. (1997). Ghetto schooling: A political economy of urban educational reform. New York, NY: Teachers College Press.

    Google Scholar 

  • Areepattamannil, S. (2012). Effects of inquiry-based science instruction on science achievement and interest in science: Evidence from Qatar. The Journal of Educational Research, 105(2), 134-146.

    Article  Google Scholar 

  • Australian Curriculum Assessment and Reporting Authority. (2018). Australian curriculum Retrieved from https://www.australiancurriculum.edu.au/f-10-curriculum/science/aims/. Accessed Feb 2019.

  • Brewer, W. F., & Samarapungavan, A. (1991). Children’s theories vs. scientific theories: Differences in reasoning or differences in knowledge? In R. R. Hoffman & D. S. Palermo (Eds.), Cognition and the symbolic processes: Applied and ecological perspectives (pp. 209-232). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • British Columbia Ministry of Education. (2018). B.C.’s new curriculum: Curriculum overview. Retrieved from https://curriculum.gov.bc.ca/curriculum/overview. Accessed Feb 2019.

  • Britner, S. L., & Pajares, F. (2006). Sources of science self-efficacy beliefs of middle school students. Journal of Research in Science Teaching, 43(5), 485-499.

    Article  Google Scholar 

  • Cairns, D., & Areepattamannil, S. (2019). Exploring the relations of inquiry-based teaching to science achievement and dispositions in 54 countries. Research in Science Education, 49(1), 1-23.

    Article  Google Scholar 

  • Dean D. Jr, & Kuhn, D. (2007). Direct instruction vs. discovery: The long view. Science Education, 91, 384-397.

    Article  Google Scholar 

  • Drent, M., Meelissen, M. R. M., & Kleij, F. M. V. D. (2013). The contribution of TIMSS to the link between school and classroom factors and student achievement. Journal of Curriculum Studies, 45(2), 198-224. doi:https://doi.org/10.1080/00220272.2012.727872

    Article  Google Scholar 

  • Foy, P., & Olson, J. F. (2009). TIMSS 2007 User Guide for the International Database. Chestnut Hill, MA: TIMSS & PIRLS International Study Center.

    Google Scholar 

  • Furtak, E. M. (2006). The problem with answers: An exploration of guided scientific inquiry teaching. Science Education, 90(3), 453-467.

    Article  Google Scholar 

  • Gao, S., Wang, J., & Zhong, Z. (2017). Influence of science instruction reform on academic performance of eighth grade students in Chinese inner-Mongolia autonomous region. Compare: A Journal of Comparative and International Education. doi:https://doi.org/10.1080/03057925.2017.1365285

  • Geier, R., Blumenfeld, P. C., Marx, R. W., Krajcik, J. S., Fishman, B., Soloway, E., & Clay-Chambers, J. (2008). Standardized test outcomes for students engaged in inquiry-based science curricula in the context of urban reform. Journal of Research in Science Teaching, 45(8), 922-939.

    Article  Google Scholar 

  • Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99-107.

    Article  Google Scholar 

  • House, J. D. (2006). The effects of classroom instructional strategies on science achievement of elementary-school students in Japan: findings from the third international mathematics and science study (TIMSS) International Journal of Instructional Media, 33(2), 217-229.

    Google Scholar 

  • House, J. D. (2008). Science beliefs, instructional strategies, and life sciences achievement of adolescent students in Japan: results from the TIMSS 1999 assessment. International Journal of Instructional Media, 35(1), 103-113.

    Google Scholar 

  • Hoyle, C. D., O’Dwyer, L. M., & Chang, Q. (2011). How student and school characteristics are associated with performance on the Maine high school assessment. (Issues & Answers Report, REL 2011–No.102). Retrieved from Washington, DC: http://ies.ed.gov/ncee/edlabs. Accessed Feb 2019.

  • Jerrim, J., Oliver, M., & Sims, S. (2019). The relationship between inquiry-based teaching and students’ achievement. New evidence from a longitudinal PISA study in England. Learning and Instruction, 61, 35-44.

    Article  Google Scholar 

  • Kaya, S., & Rice, D. C. (2010). Multilevel effects of student and classroom factors on elementary science achievement in five countries. International Journal of Science Education, 32(10), 1337-1363.

    Article  Google Scholar 

  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75-86.

    Article  Google Scholar 

  • Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction effects of direct instruction and discovery learning. Psychological Science, 15(10), 661-667.

    Article  Google Scholar 

  • Kruit, P. M., Oostdam, R. J., van den Berg, E., & Schuitema, J. A. (2018). Effects of explicit instruction on the acquisition of students’ science inquiry skills in grades 5 and 6 of primary education. International Journal of Science Education, 1-21. doi:https://doi.org/10.1080/09500693.2018.1428777

  • Lamb, S., & Fullarton, S. (2002). Classroom and school factors affecting mathematics achievement: A comparative study of Australia and the United States using TIMSS. Australian Journal of Education, 46(2), 154-171.

    Article  Google Scholar 

  • Lavonen, J., & Laaksonen, S. (2009). Context of teaching and learning school science in Finland: Reflections on PISA 2006 results. Journal of Research in Science Teaching, 46(8), 922-944.

    Article  Google Scholar 

  • Likourezos, V., & Kalyuga, S. (2017). Instruction-first and problem-solving-first approaches: Alternative pathways to learning complex tasks. Instructional Science, 45(2), 195-219.

    Article  Google Scholar 

  • Matlen, B. J., & Klahr, D. (2013). Sequential effects of high and low instructional guidance on children’s acquisition of experimentation skills: Is it all in the timing? Instructional Science, 41(3), 621-634.

    Article  Google Scholar 

  • McConney, A., Oliver, M. C., Woods-McConney, A., Schibeci, R., & Maor, D. (2014). Inquiry, Engagement, and Literacy in Science: A Retrospective, Cross-National Analysis Using PISA 2006. Science Education, 98(6), 963-980.

    Article  Google Scholar 

  • Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction - What is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474-496.

    Article  Google Scholar 

  • Mullis, I. V. S., Martin, M. O., Ruddock, G. J., O’Sullivan, C. Y., Arora, A., & Erberber, E. (2005). TIMSS 2007 Assessment Frameworks. Chestnut Hill, MA: TIMSS & PIRLS International Study Center.

    Google Scholar 

  • National Research Council. (1996). National science education standards. Washington,DC: National Academy Press.

  • Pine, J., Aschbacher, P., Roth, E., Jones, M., McPhee, C., Martin, C., … Foley, B. (2006). Fifth graders’ science inquiry abilities: A comparative study of students in hands-on and textbook curricula. Journal of Research in Science Teaching, 43(5), 467-484.

  • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. Advanced quantitative techniques in the social sciences. Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  • Renken, M. D., & Nunez, N. (2010). Evidence for improved conclusion accuracy after reading about rather than conducting a belief-inconsistent simple physics experiment. Applied Cognitive Psychology, 24(6), 792-811.

    Article  Google Scholar 

  • Rittle-Johnson, B. (2006). Promoting transfer: effects of self-explanation and direct instruction. Child Development, 7(1), 1-15.

    Article  Google Scholar 

  • Sadler, T. D., & Zeidler, D. L. (2005). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89(1), 71-93. doi:https://doi.org/10.1002/sce.20023

    Article  Google Scholar 

  • Schreiber, J. B. (2002). Institutional and student factors and their influence on advanced mathematics achievement. Journal of Educational Research, 95(5), 274-286.

    Article  Google Scholar 

  • Schwichow, M., Croker, S., Zimmerman, C., Höffler, T., & Härtig, H. (2016). Teaching the control-of-variables strategy: A meta-analysis. Developmental Review, 39, 37-63.

    Article  Google Scholar 

  • Songer, N. B., Lee, H.-S., & Kam, R. (2002). Technology-rich inquiry science in urban classrooms: What are the barriers to inquiry pedagogy? Journal of Research in Science Teaching, 39(2), 128-150.

    Article  Google Scholar 

  • Stockard, J., Wood, T. W., Coughlin, C., & Khoury, C. R. (2018). The effectiveness of direct instruction curricula: A meta-analysis of a half century of research Review of Educational Research, 88(4), 479-507.

    Article  Google Scholar 

  • Stull, A. T., & Mayer, R. E. (2007). Learning by doing versus learning by viewing: Three experimental comparisons of learner-generated versus author-provided graphic organizers. Journal of Educational Psychology, 99(4), 808-820.

    Article  Google Scholar 

  • Sweller, J., Kirschner, P. A., & Clark, R. E. (2007). Why minimally guided teaching techniques do not work: A reply to commentaries. Educational Psychologist, 42(2), 115-121.

    Article  Google Scholar 

  • Teig, N., Scherer, R., & Nilsen, T. (2018). More isn’t always better: The curvilinear relationship between inquiry-based teaching and student achievement in science. Learning and Instruction, 56, 20-29.

    Article  Google Scholar 

  • Zhang, L. (2016). Is inquiry-based science teaching worth the effort? Some thoughts worth considering. Science & Education, 25(7), 897-915.

    Article  Google Scholar 

  • Zhang, L. (2018). Withholding answers during hands-on scientific investigations? Comparing effects on developing students’ scientific knowledge, reasoning, and application. International Journal of Science Education, 40(4), 459 - 469. doi:https://doi.org/10.1080/09500693.2018.1429692

    Article  Google Scholar 

  • Zhang, L. (2019). “Hands-on” plus “inquiry”? Effects of withholding answers coupled with physical manipulations on students’ learning of energy-related science concepts. Learning and Instruction, 60, 199-205. doi:https://doi.org/10.1016/j.learninstruc.2018.01.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to give special thanks to the anonymous reviewers for their comments and help in preparation of this manuscript. This paper was supported in part by the National Institute for Direct Instruction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, Z. How Does Inquiry-Based Scientific Investigation Relate to the Development of Students’ Science Knowledge, Knowing, Applying, and Reasoning? An Examination of TIMSS Data. Can. J. Sci. Math. Techn. Educ. 19, 334–345 (2019). https://doi.org/10.1007/s42330-019-00055-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42330-019-00055-9

Keywords

Navigation