Skip to main content

Advertisement

Log in

Abstract

In this article, we examine how the concept of autonomy may be construed as a foundational value which underpins students’ coherent sensemaking of how the physical world operates. Autonomy and science both require students to comprehend and assess the quality of evidence, claims, and alternative outcomes. Further, participation in scientific sensemaking affords opportunities for dialogue, agency, and power, while autonomy stresses a concern for the quality of both the decisions that students arrive at regarding themselves, their participation in the scientific enterprise, and the reasoning behind their decisions. In particular, we focus on how autonomy provides a foundation for the education of students as “epistemic agents.” Our work indicates that the development of students’ autonomy is predicated on carefully examining and challenging traditional power relationships found within classrooms. By pursuing the goal of autonomy, and challenging the entrenched power relationships oft found in science education, we argue that science education can become more meaningful, and accessible, to more students.

Résumé

Dans cet article, nous nous penchons sur les façons dont on peut construire le concept d’autonomie comme valeur fondamentale qui sous-tend la compréhension cohérente du fonctionnement du monde physique de la part des étudiants. L’autonomie et les sciences exigent des étudiants qu’ils comprennent et évaluent la qualité des preuves, des affirmations et des éventuels résultats. De plus, la participation à l’explication/compréhension des phénomènes scientifiques offre des possibilités de dialogue, d’agir et de pouvoir, alors que l’autonomie est. surtout axée sur la qualité des décisions que finissent par prendre les étudiants à leur propre sujet et au sujet de leur participation à l’entreprise scientifique, ainsi que sur le raisonnement qui est. à la base de leurs décisions. En particulier, nous centrons notre analyse sur les façons dont l’autonomie fournit les fondements de la formation des étudiants comme « agents épistémiques ». Nos travaux indiquent que le développement de l’autonomie des étudiants se fonde sur une analyse critique détaillée des relations de pouvoir traditionnelles qui entrent en jeu dans la classe. En poursuivant cet enjeu d’autonomie, et en remettant en question les relations de pouvoir souvent présentes en enseignement des sciences, nous estimons que la formation scientifique peut en effet devenir plus significative, et plus accessible à un plus grand nombre d’étudiants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, B. (1980). Social justice in the liberal state. New Haven: Yale University Press.

    Google Scholar 

  • Aikenhead, G. (1990). Scientific/technological literacy, critical reasoning, and classroom practice. In S. P. Norris & L. M. Phillips (Eds.), Foundations of literacy policy in Canada (pp. 127–145). Calgary, AB: Detselig.

    Google Scholar 

  • Australian Academy of Science. (2017). Science by Doing. Canberra: Australian Academy of Science. Available from: https://www.sciencebydoing.edu.au/

    Google Scholar 

  • Bailin, S. & Siegel, H. (2003). ‘Critical Thinking’. In N. Blake, P. Smeyers, R. Smith & P. Standish (Eds.), The Blackwell Guide to the Philosophy of Education. (pp. 181–193). Blackwell.

  • Calabrese Barton, A., & Yang, K. (2000). The case of Miguel and the culture of power in science. Journal of Research in Science Teaching, 37 (8), 871–889.

    Article  Google Scholar 

  • Cuypers, S. E. (2004). Critical Thinking, Autonomy and Practical Reason, Journal of Philosophy of Education, 38, 75–90.

    Article  Google Scholar 

  • Ervin-Tipps, S., O’Connor, M. C. & Rosenberg, J. (1984). Language and power in the family. In C. Kramarae & M. Schutlz (Eds.), Language and power (pp. 116–135). Urbana: University of Illinois.

    Google Scholar 

  • Fittell, D. (2010). Student autonomy enhancing science learning : Observations from a Primary Connections implementation. In 2010 Annual Conference of the Australian Science Education Research Association, 30 June–3 July 2010, Port Stephens, New South Wales.

  • Ford, M. J. (2012). A dialogic account of sense-making in scientific argumentation and reasoning. Cognition and Instruction, 30 (3), 207–245

  • Foucault, M. (1979). Discipline and punish. New York: Vintage.

    Google Scholar 

  • Heath, S. B. (2005). Strategic thinking, learning environments, and real roles: Suggestions for future work. Human Development, 48, 350–355.

    Article  Google Scholar 

  • Heath, S. B. (2001). Three’s not a crowd: Plans, roles, and focus in the arts, Educational Researcher, 30 (7), 10–17.

    Article  Google Scholar 

  • Heras, M. & Isabel Ruiz-Mallén, I. (2017 online): Responsible research and innovation indicators for science education assessment: how to measure the impact? International Journal of Science Education. Available from: https://doi.org/10.1080/09500693.2017.1392643

  • Hodson, D. (2010). Science education as a call to action. Canadian Journal of Science, Mathematics and Technology Education, 10, 197–206.

    Article  Google Scholar 

  • Kerr, D. (2006). Teaching autonomy: The obligations of liberal education in plural societies. Studies in Philosophy and Education, 25, pp. 425–56.

    Article  Google Scholar 

  • Kerr, D. (2002). Devoid of community: Examining conceptions of autonomy in education. Educational Theory, 52, 1, pp. 13–25.

    Article  Google Scholar 

  • Kuhn, D. (1991). The skills of argument. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Latour, B. (2004). Why has critique run out of steam? From matters of fact to matters of concern. Critical Inquiry, 30, 225–248.

    Article  Google Scholar 

  • Lehrer, R., & Schauble, L. (2006). Scientific thinking and scientific literacy. In K. A. Renninger & I. E. Siegel (Eds.), Handbook of child psychology, 6 (4), (pp. 153–196). Hoboken, NJ: Wiley.

    Google Scholar 

  • Levinson, R. (2013). Practice and theory of socio-scientific issues: an authentic model? Studies in Science Education, 49 (1), 99–116.

    Article  Google Scholar 

  • Max Planck Institute for Human Development. (n.d.). Supporting Autonomy in Science Activities. Accessed from: https://www.mpib-berlin.mpg.de/en/research/concluded-areas/educational-research/research-area-iv/sasa

  • Melville, W. & Bartley, A. (2013). Constituting identities that challenge the contemporary discourse: Power, discourse, experience and emotion. Science Education, 97(2), 171–190.

    Article  Google Scholar 

  • Meyer, X.S. & Crawford, B.A. (2015). Multicultural inquiry toward demystifying scientific culture and learning science. Science Education, 99 (4), 617–637.

    Article  Google Scholar 

  • NGSS Lead States (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press.

  • NGSS Lead States (2013). Next Generation Science Standards: For states, by states. Appendix D. Washington, DC: The National Academies Press. Accessed from: http://www.nextgenscience.org/sites/ngss/files/Appendix%20D%20Diversity%20and%20Equity%206-14-13.pdf

  • Osborne, J. (2010). Arguing to learn in science: The role of collaborative critical discourse, Science, 328 (23): 463–466.

    Article  Google Scholar 

  • Osborne, J. & Hennessy, S. (2006). Literature review in science education and the role of ICT: Promise, problems and future directions. London: King’s College, London & University of Cambridge. Accessed from: www.futurelab.org.uk/research/lit_reviews.htm.

  • Owen, R., Macnaghten, P. & Stilgoe, J. (2012). Responsible research and innovation: From science in society to science for society, with society. Science and Public Policy, 39, 751–760.

    Article  Google Scholar 

  • Parchmann, I., Grasel, C., Baer, A., Nentwig, P., Demuth, R., Ralle, B., & the ChiK project group. (2006). ‘Chemie im Kontext’: A symbiotic implementation of a context based teaching and learning approach. International Journal of Science Education, 28, 1041–1062.

    Article  Google Scholar 

  • Pasl, A. Jalil, P.A., Abu Sbeih, M.Z., Boujettif, M. & Barakat, R. (2009). Autonomy in science education: A practical approach in attitude shifting towards science learning. Journal of Science Education and Technology, 18 (6), 476–486.

    Article  Google Scholar 

  • Patall, E.A., Vasquez, A.C., Steingut, R.R., Trimble, S.S. & Pituch, K.A. (2017). Supporting and Thwarting Autonomy in the High School Science Classroom, Cognition and Instruction, 35 (4), 337–362.

    Article  Google Scholar 

  • Pedretti, E. & Nazir, J. (2011). Currents in STSE education: Mapping a complex field, 40 years on. Science Education, 95, 601–626.

    Article  Google Scholar 

  • Peters, R. S. (1977). Dilemmas in Liberal Education. in R. S. Peters, Education and the Education of Teachers. London: Routledge and Kegan Paul, 68–85.

    Google Scholar 

  • Puvirajah, A., Verma, G., & Webb, P. (2012). Examining the mediation of power in a collaborative community: Engaging in informal science as authentic practice. Cultural Studies of Science Education, 7, 375–408 (DOI https://doi.org/10.1007/s11422-012-9394-2)

    Article  Google Scholar 

  • Reiser, B. J. 2013. What professional development strategies are needed for successful implementation of the Next Generation Science Standards? Paper presented at the Invitational Research Symposium on Science Assessment, September 24–25, Washington, DC. Available from: www.ets.org/research/policy_research_reports/publications/paper/2013/jvgw.

  • Roberts, D. A. (2011). Competing visions of scientific literacy: The influence of a science curriculum policy image. In C. Linder., L. Ostman., D.A. Roberts., P-O Wickman., G. Erickson and A. McKinnon, (Eds). Exploring the landscape of scientific literacy. London: Routledge, 11–27.

  • Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In B. Smith (Ed.), Liberal education in a knowledge society (pp. 67–98). Chicago, IL: Open Court.

    Google Scholar 

  • Sockett, H. (1993 ). The moral basis of teacher professionalism. New York: Teachers College Press.

  • Strike, K. (1982). The authority of ideas and the students’ right to autonomy. In Liberty and Learning, 41–53. Oxford: Robertson.

  • Stroupe, D. (2014). Examining classroom science practice communities: How teachers and students negotiate epistemic agency and learn science-as-practice. Science Education, 98 (3), 487–516.

    Article  Google Scholar 

  • Tobin, K. (2011). Global reproduction and transformation of science education. Cultural Studies of Science Education, 6 (1), 127–142.

    Article  Google Scholar 

  • Warren, B., & Rosebery, A. (1995). Equity in the future tense: Redefining relationships among teachers, students, and science in linguistic minority classrooms. In W. Secada, E. Fennema & L. Adajian (Eds.), New directions for equity in mathematics education (pp. 289–328). New York: Cambridge University Press.

    Google Scholar 

  • Winch, C. (2005). Education, Autonomy and Critical Thinking. London: Routledge.

    Google Scholar 

  • Winch, C. (2002). Strong autonomy and education. Educational Theory, 52(1), 27–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Melville.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melville, W., Kerr, D., Verma, G. et al. Science Education and Student Autonomy. Can J Sci Math Techn 18, 87–97 (2018). https://doi.org/10.1007/s42330-018-0011-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42330-018-0011-6

Keywords

Navigation