Developing Education Research Competencies in Mathematics Teachers Through TRAIL: Teacher-Researcher Alliance for Investigating Learning

  • Boris Koichu
  • Alon Pinto


This theoretical article explores an issue of developing education research competencies in mathematics teachers through their involvement in mathematics education research. We first argue that the development of education research competencies is beneficial for the teachers’ professional growth. We then identify opportunities for mathematics teachers to develop education research competencies through different modes of research-practice partnerships. In the main part of the paper, we present a particular theoretical-organizational framework for large-scope teacher-researcher collaborations in educational research. The framework is called Teacher-Researcher Alliance for Investigating Learning (TRAIL), and consists of a set of theoretically laden premises, design heuristics, and provisional partnerships.


Research competencies Research-practice partnerships Teacher research Teacher professional growth Citizen science 


Cet article théorique analyse un aspect du perfectionnement des compétences de recherche en didactique chez les enseignants des mathématiques, en se penchant sur leur engagement dans la recherche en enseignement des mathématiques. D’abord, nous posons comme principe que le perfectionnement des compétences dans les domaines de recherche en enseignement est. bénéfique pour la croissance professionnelle des enseignants. Ensuite, nous décrivons des situations grâce auxquelles les enseignants de mathématiques peuvent acquérir ou perfectionner certaines compétences en recherche par le biais de différents types de partenariats de recherche-pratique. Dans le corps de l’article, nous présentons un cadre théorique-organisationnel favorisant la collaboration entre chercheurs et enseignants dans des projets de recherche didactique de grande envergure. Ce cadre, appelé Alliance chercheurs-enseignants pour la recherche en apprentissage (« TRAIL », soit Teacher-Researcher Alliance for Investigating Learning), consiste en une série de prémisses théoriques, d’heuristiques conceptuelles et de partenariats provisionnels.


  1. Ball, D. L., & Cohen, D. (1999). Developing practice, developing practitioners. In L. Darling-Hammond & G. Sykes (Eds.), Teaching as the learning profession: Handbook of policy and practice. San Francisco, CA: Jossey Bass.Google Scholar
  2. Barbeau, E. J. (2009). Introduction. In Barbeau, E. J., & Taylor, P. J. (Eds.). (2009), Challenging mathematics in and beyond the classroom, Study Volume of ICMI Study 16 (pp. 1–9). New York, NY: Springer.Google Scholar
  3. Barbeau, E. J., & Taylor, P. J. (Eds.). (2009). Challenging mathematics in and beyond the classroom: the 16th ICMI study (Vol. 12). Springer Science & Business Media.Google Scholar
  4. Boaler, J., Ball, D. L., & Even, R. (2003). Preparing mathematics education researchers for disciplined inquiry: Learning from, in, and for practice. In Second international handbook of mathematics education (pp. 491–521). Springer Netherlands.Google Scholar
  5. Bonney, R., Ballard, H., Jordan, R., McCallie, E., Phillips, T., Shirk, J., & Wilderman, C. C. (2009). Public Participation in Scientific Research: Defining the Field and Assessing Its Potential for Informal Science Education. A CAISE Inquiry Group Report. Washington, D.C.: Center for Advancement of Informal Science Education (CAISE).Google Scholar
  6. Cobb, P. (2000). Conducting teaching experiments in collaboration with teachers. In A. Kelly, R. Lesh (Eds.), Handbook of Research Design in Mathematics and Science Education (pp. 307–333). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  7. Crawford, K., & Adler, J. (1996). Teachers as researchers in mathematics education. In A. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International Handbook of Mathematics Education (pp. 1187–1205). Dordrecht, The Netherlands: Kluwer.Google Scholar
  8. Cronbach, L. J., & Suppes, P. (Eds.). (1969). Research for tomorrow's schools: Disciplined inquiry for education. New York: Macmillan.Google Scholar
  9. Day, C. (1999). Developing teachers: The challenges of lifelong learning. Psychology Press.Google Scholar
  10. Ellis, J. L. (1998). Introduction. The teacher as interpretive inquirer. In Ellis, J. L. (Ed.), Teaching from understanding: Teacher as interpretive inquirer (pp. 5–14). Taylor & Francis.Google Scholar
  11. Even, R. (1999). Integrating academic and practical knowledge in a teacher leaders’ development program. In Forms of Mathematical Knowledge (pp. 235–252). Springer Netherlands.Google Scholar
  12. Even, R. (2003). What can teachers learn from research in mathematics education? For the Learning of Mathematics, 23(3), 38–42.Google Scholar
  13. Fischbein, E., & Kedem, I. (1982), Proof and certitude in the development of mathematical thinking, in A. Vermandel (Ed.), Proceedings of the Sixth International Conference for the Psychology of Mathematics Education (pp. 128–131). Antwerp, Belgium.Google Scholar
  14. Fishman, B. J., Penuel, W. R., Allen, A. R., Cheng, B. H., & Sabelli, N. O. (2013). Design-based implementation research: An emerging model for transforming the relationship of research and practice. National Society for the Study of Education, 112(2), 136–156.Google Scholar
  15. Goldin, G. A. (1998). Representational systems, learning, and problem solving in mathematics. The Journal of Mathematical Behavior, 17(2), 137–165.CrossRefGoogle Scholar
  16. Golombic, Y. (2015). What makes Citizen Science projects successful, and what can we learn from them for future projects? Unpublished report on the literature review written on request of the steering committee of the Technion Citizen Science Project under the supervision of Boris Koichu.Google Scholar
  17. Jaworski, B. (2003). Research practice into/influencing mathematics teaching and learning development: Towards a theoretical framework based on co-learning partnerships. Educational Studies in Mathematics, 54(2), 249–282.CrossRefGoogle Scholar
  18. Karsenty, R., & Arcavi, A. (2017). Mathematics, lenses and videotapes: a framework and a language for developing reflective practices of teaching. Journal of Mathematics Teacher Education, 20(5), 433–455.CrossRefGoogle Scholar
  19. Kieran, C., Krainer, K., & Shaughnessy, J. M. (2013). Linking research to practice: Teachers as key stakeholders in mathematics education research. In M.A. Clements, A. Bishop, C. Keitel, J. Kilpatrick, & F. Leung (Eds.) Third International Handbook of Mathematics Education, Volume B (pp. 361–392). Dordrecht, the Netherland: Springer.Google Scholar
  20. Kilpatrick, J. (1981). The reasonable ineffectiveness of research in mathematics education. For the Learning of Mathematics, 2(2), 22–29.Google Scholar
  21. Koichu, B. (2017). On mathematics with distinction, a learner-centered conceptualization of challenge and choice-based pedagogies. The Mathematics Enthusiast, 14(1–3), 517–540.Google Scholar
  22. Koichu, B., & Keller, N. (2018). Creating and sustaining online problem-solving forums: Two perspectives. In P. Liljedahl & L. M. Santos Trigo (Eds.), Mathematical Problem Solving: ICME 13 Monograph (tentative title). Springer. (in press).Google Scholar
  23. Koichu, B., Harel. G., & Manaster, A. (2013). Ways of thinking associated with mathematics teachers’ problem posing in the context of division of fractions. Instructional Science, 41(4), 681–698.Google Scholar
  24. Kontorovich, I., & Rouleau, A. (2018). To teach or not to teach? Teacher-researchers cope with misconceptions in interview settings. Canadian Journal of Science, Mathematics and Technology Education.
  25. Krainer, K. (2014). Teachers as stakeholders in mathematics education research. The Mathematics Enthusiast, 11(1), 49.Google Scholar
  26. Labaree, D. F. (2003). The peculiar problems of preparing educational researchers. Educational researcher, 32(4), 13–22.CrossRefGoogle Scholar
  27. Leikin, R., Koichu, B., Berman, A., & Dinur, S. (2017). Does general giftedness play a role in classes of students motivated to study mathematics at a high level? Focus on students' questions. ZDM Mathematics Education, 49, 65-80.Google Scholar
  28. Leikin R., & Zazkis R. (Eds.) (2010). Learning through Teaching Mathematics. Mathematics Teacher Education, vol 5. Springer, Dordrecht.Google Scholar
  29. Ma, L. (1999). Knowing and teaching elementary mathematics. Mahwah, NJ: Erlbaum.Google Scholar
  30. Mason, J. (2002). Researching your own Classroom Practice: From Noticing to Reflection. Routledge Falmer, London.Google Scholar
  31. Mason, J., & Spence, M. (1999). Beyond mere knowledge of mathematics: The importance of knowing-to act in the moment. Educational Studies in Mathematics, 1(38), 135–161.CrossRefGoogle Scholar
  32. Menter, I., Elliot, D., Hulme, M., Lewin, J., & Lowden, K. (2011). A guide to practitioner research in education. Sage publishing.Google Scholar
  33. Nardi, E. (2015). “Not like a big gap, something we could handle”: Facilitating shifts in paradigm in the supervision of mathematics graduates upon entry into mathematics education. International Journal of Research in Undergraduate Mathematics Education, 1(1), 135–156.CrossRefGoogle Scholar
  34. Rowland, T., Thwaites, A., & Jared, L. (2011). Triggers of contingency in mathematics teaching. In B. Ubuz (Ed.), Proceedings of the 35th conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 73–80). Ankara: International Group for the Psychology of Mathematics Education.Google Scholar
  35. Rowland, T., & Zazkis, R. (2013). Contingency in the mathematics classroom: Opportunities taken and opportunities missed. Canadian Journal of Science, Mathematics and Technology Education, 13(2), 137–153.CrossRefGoogle Scholar
  36. Schoenfeld, A. H. (2000). Purposes and methods of research in mathematics education. Notices of the AMS, 47(6), 641–649.Google Scholar
  37. Schoenfeld, A. H. (2009). Bridging the cultures of educational research and design. Educational Designer: Journal of the International Society for Design and Development in Education, 1(2). Available online at:
  38. Schön, D. (1983). The reflective practitioner: How professionals think in action. London: Temple-Smith.Google Scholar
  39. Shulman, L. (1981). Disciplines of inquiry in education: An overview. Educational researcher, 10(6), 5–23.CrossRefGoogle Scholar
  40. Stahl, G., & Rosé, C. P. (2011). Group cognition in online teams. In E. Salas & S. M. Fiore (Eds.), Theories of team cognition: Cross-disciplinary perspectives. New York, NY: Routledge/Taylor & Francis.Google Scholar
  41. Stylianides, G. J., & Stylianides, A. J. (2010). Mathematics for teaching: A form of applied mathematics. Teaching and Teacher Education 26(2), 161–172.CrossRefGoogle Scholar
  42. Taylor, L. A. (2017). How teachers become teacher researchers: Narrative as a tool for teacher identity construction. Teaching and Teacher Education, 61, 16–25.CrossRefGoogle Scholar
  43. Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458–477.CrossRefGoogle Scholar
  44. Wagner, J. (1997). The unavoidable intervention of educational research: A framework for reconsidering researcher-practitioner cooperation. Educational Researcher, 26(7), 13–22.CrossRefGoogle Scholar
  45. Wareerat, K., Rujroad, K., Skonchai, C., Wanintorn, S., & Sureeporn, S. (2016). The Development of the Teachers’ Researcher Network to Create Instructional Innovation for Raising Students’ Learning Achievement in Science and Mathematics, Thailand. Advanced Science Letters, 22(12), 4514–4518.CrossRefGoogle Scholar
  46. Watson, A., & Barton, B. (2011). Teaching mathematics as the contextual application of modes of mathematical enquiry. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 65–82). London: Springer.CrossRefGoogle Scholar
  47. Watson, A., & Mason, J. (2007). Taken-as-shared: A review of common assumptions about mathematical tasks in teacher education. Journal of Mathematics Teacher Education, 10(4–6), 205–215.CrossRefGoogle Scholar
  48. Wiggins, A., & Crowston, K. (2011). From conservation to crowdsourcing: A typology of citizen science. Proceedings of the 44th Annual Hawaii International Conference on Systems Sciences (pp. 1–10), Koloa, Hawaii. Available online at

Copyright information

© Ontario Institute for Educational Studies (OISE) 2018

Authors and Affiliations

  1. 1.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations