Skip to main content
Log in

Deep Water Waves from Oscillating Elliptic Source

  • Original Article
  • Published:
Water Waves Aims and scope Submit manuscript

Abstract

Asymptotic solutions describing linear waves generated by oscillating elliptic source are constructed employing the recently developed “Reference Solution Approach” (RSA). The source is assumed to be in rest. The resulting wave pattern exhibits pronounced anisotropy of the solutions for elongated sources. The classic Kelvin angles of the ship wave patterns determine specific distinguished directions. The analytical results within the RSA are shown to agree remarkably well with the exact linear solutions of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Benzaquen, M., Darmon, A., Raphaël, E.: Wake pattern and wave resistance for anisotropic moving disturbances. Phys. Fluids 26(9), 092106 (2014). https://doi.org/10.1063/1.4896257

    Article  Google Scholar 

  2. Bulatov, V.V., Vladimirov, Y.V.: Far surface gravity waves fields under unstable generation regimes. J. Phys. Conf. Ser. 1392, 012005 (2019)

    Article  Google Scholar 

  3. Bulatov, V.V., Vladimirov, Y.V.: Internal gravity waves from a moving source: modeling and asymptotics. J. Phys. Conf. Ser. 1268, 012013 (2019)

    Article  Google Scholar 

  4. Carusotto, I., Rousseaux, G.: The Cěrenkov effect revisited: from swimming ducks to zero modes in gravitational analogues. In: Faccio, D., Belgiorno, F., Cacciatori, S., Gorini, V., Liberati, S., Moschella, U. (eds.) Analogue Gravity Phenomenology, pp. 109–144. Springer, Cham (2013). https://doi.org/10.1007/9783-319-00266-8_6

    Chapter  Google Scholar 

  5. Cauchy, A.-L.: Théorie de la propagation des ondes á la surface d’un fluid pesant d’une profondeur indéfinie, prix d’analyse mathématique en 1815, imprimé en 1827 dans les Mémoires de l’Académie des Sciences. Œvres complètes d’Augustin Cauchy. 1, vol. I, pp. 4–318. Gauthier-Villars, 1882, Paris, France (1815)

  6. Clauss, G.F., Bergmann, J.: Gaussian wave packets - a new approach to seakeeping tests of ocean structures. Appl. Ocean Res. 8(4), 190–206 (1986)

    Article  Google Scholar 

  7. Davys, J.W., Hosking, R.J., Sneyd, A.D.: Waves due to a steadily moving source on a floating ice plate. J. Fluid Mech. 158, 269–287 (1985)

    Article  MATH  Google Scholar 

  8. Fedoryuk, M.V.: Saddle point method. In: Hazewinkel, M. (ed.) Encyclopedia of Mathematics. Springer, Dordrecht (1994)

    Google Scholar 

  9. Fedoryuk, M.V.: Asymptotic: Integrals and Series. Nauka, Moscow (1987)

    MATH  Google Scholar 

  10. Gnevyshev, V., Badulin, S.: Wave patterns of gravity-capillary waves from moving localized sources. Fluids (2020). https://doi.org/10.3390/fluids5040219

    Article  Google Scholar 

  11. Gnevyshev, V.G., Badulin, S.I.: On the asymptotics of multidimensional linear wave packets: reference solutions. Mosc. Univ. Phys. Bull. 72(4), 415–423 (2017)

    Article  MathSciNet  Google Scholar 

  12. Gnevyshev, V.G., Badulin, S.I.: On reference solutions for ship waves. AIP Adv. 10, 025014 (2020). https://doi.org/10.1063/1.5141133

    Article  Google Scholar 

  13. Havelock, T.H.: LIX. Forced surface-waves on water. Lond. Edinb. Dublin Philos. Mag. J. Sci. 8:51, 569–576 (1929). https://doi.org/10.1080/14786441008564913

    Article  MATH  Google Scholar 

  14. Kajiura, K.: Tsunami source, energy and the directivity of wave radiation. Bull. Earthq. Res. Inst. 48, 835–869 (1970)

    Google Scholar 

  15. Kelvin, L.: Deep sea ship waves. Proc. R. Soc. Edinb. 25(2), 1060–1084 (1906). https://doi.org/10.1017/S0370164600016771

    Article  MATH  Google Scholar 

  16. Lamb, H.: Hydrodynamics, 6th edn., p. 738. Cambridge University Press, Cambridge, United Kingdom (1975)

    MATH  Google Scholar 

  17. Lighthill, M.J.: On waves generated in dispersive systems by travelling forcing effects, with applications to the dynamics of rotating fluids. J. Fluid Mech. 27, 725–752 (1967)

    Article  MATH  Google Scholar 

  18. Lighthill, J.: Waves in Fluids, p. 504. Cambridge University Press, Cambridge, United Kingdom (1978)

    MATH  Google Scholar 

  19. Lighthill, M.J.: Contributions to the theory of waves in nonlinear dispersive systems. J. Inst. Maths. Appl. 1, 269–306 (1965)

    Article  Google Scholar 

  20. Longuet-Higgins, M.S.: The response of a stratified ocean to stationary or moving wind-systems. Deep Sea Res. 12, 923–973 (1965)

    Google Scholar 

  21. Moisy, F., Rabaud, M.: Scaling of far-field wake angle of nonaxisymmetric pressure disturbance. Phys. Rev. E 89, 063004 (2014). https://doi.org/10.1103/PhysRevE.89.063004

    Article  Google Scholar 

  22. Nayfeh, A.H.: Perturbation Methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (1973)

    MATH  Google Scholar 

  23. Pethiyagoda, R., McCue, S.W., Moroney, T.J.: What is the apparent angle of a Kelvin ship wave pattern? J. Fluid Mech. 758, 468–485 (2014). https://doi.org/10.1017/jfm.2014.530

    Article  MathSciNet  Google Scholar 

  24. Poisson, S.D.: Mémoire sur la théorie des ondes. Mém. l’Académie R. Sci. 8, 357–570 (1816)

    Google Scholar 

  25. Rabaud, M., Moisy, F.: Narrow ship wakes and wave drag for planing hulls. Ocean Eng. (2014). https://doi.org/10.1016/j.oceaneng.2014.06.039i

    Article  Google Scholar 

  26. Sretenskii, L.N.: The motion of a vibrator under the surface of a fluid. Trudy Mosk. Mat. Obshchestva, GITTL, Mosc. 3, 3–14 (1954)

    MathSciNet  Google Scholar 

  27. Stepanyants, Y.A., Sturova, I.V.: Waves on a compressed floating ice plate caused by motion of a dipole in water. J. Fluid Mech. 907(A7), 1–29 (2021). https://doi.org/10.1017/jfm.2020.764

    Article  MathSciNet  MATH  Google Scholar 

  28. Stokes, G.G.: Problem 11 of the Smith’s Prize examination papers (Feb. 2, 1876). Mathematical and Physical Papers, vol. 5, p. 362. Cambridge at the University Press, reprinted by Johnson Reprint Co., 1966, New York (1905)

  29. Thomson, W.: On ship waves. Proc. Inst. Mech. Engrs. 38, 409–434 (1887)

    Article  Google Scholar 

  30. Tyvand, P.A., Mulstad, C., Bestehorn, M.: A nonlinear impulsive Cauchy–Poisson problem. Part 1. Eulerian description. J. Fluid Mech. 906, 24 (2021). https://doi.org/10.1017/jfm.2020.787

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Victor Shrira for fruitful discussion and useful suggestions.

Funding

The work is supported by Russian Science Foundation Grant \(\sharp \)19-72-30028 (S.B.) and by Ministry of Science and Higher Education of the Russian Federation under the program FMWE-2021-0003 (V.G.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, formal analysis, writing—original draft preparation: VG. Methodology, formal analysis, visualization, writing—review and editing: SB. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sergei Badulin.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnevyshev, V., Badulin, S. Deep Water Waves from Oscillating Elliptic Source. Water Waves 5, 239–256 (2023). https://doi.org/10.1007/s42286-023-00080-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42286-023-00080-0

Keywords

Navigation