Skip to main content
Log in

Numerical Simulations of Waves Breaking over a Rectangular Submerged Reef Consisting of a Double Step: Analogies with massive Natural Wave Breaking over Abrupt Bathymetries

  • Original Article
  • Published:
Water Waves Aims and scope Submit manuscript

Abstract

The aim of this article is not to study any practical design for a breakwater device nor to show the evidence of a particular event when waves break over a varying bathymetry, but to promote a paper showing an interesting idea of wave decomposition prior to impact, used in an experimental and numerical study published by Yasuda et al. (Proceedings 25th international conferences coastal engineering, pp 300–313, 1996) and Yasuda et al. (Coast Eng J 41(2): 269–280, 1999. We investigated the new type of breaker, proposed by Yasuda et al. (1996), by detailing several geometric aspects which lead to the unusual size and behavior of some very large plunging jets generated when waves break above some drastic changes of bathymetry. We thoroughly investigated all geometrical aspects of the breaking process, to propose a classification of the breaker types which were observed in our numerical results. We indicated the influences of the reef parameters (steps heights and lengths) on the subsequent breaking process. We also showed that the air entrainment was indeed much larger during the composite breaker occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

Movies and pictures generated from the numerical simulations can be made available on reasonable request. The numerical tool used to generate the simulations is an open-source tool, available from: https://notus-cfd.org/. Source code available from: https://git.notus-cfd.org/notus/notus.

Notes

  1. Notus CFD code: http://www.notus-cfd.org is developed in the I2M Laboratory.

References

  1. Bacigaluppi, P., Ricchiuto, M., Bonneton, P.: Implementation and evaluation of breaking detection criteria for a hybrid boussinesq model. Water Waves 2, 207–241 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Battjes, J.A.: Surf-zone dynamics. Ann. Rev. Fluid Mech. 20, 257–293 (1988)

    Article  Google Scholar 

  3. Blenkinsopp, C.E., Chaplin, J.R.: Void fraction measurements in breaking waves. Proc. R. Soc. A Math. Phys. Eng. Sci. 463(2088), 3151–3170 (2007)

    Google Scholar 

  4. Blenkinsopp, C.E., Chaplin, J.R.: The effect of relative crest submergence on wave breaking over submerged slopes. Coast. Eng. 55(12), 967–974 (2008)

    Article  Google Scholar 

  5. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bryan, C.: Biggest teahupoo ever, shot on the phantom camera. All images were shot by Chris Bryan using the Phantom HD Gold camera. WWW.CHRISBRYANFILMS.COM. Video available via Youtube: https://www.youtube.com/watch?v=7woVTuN8k3c (2011)

  7. Chang, K.-A., Hsu, T.-J., Liu, P.L.-F.: Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle. Coast. Eng. 44, 13–36 (2001)

    Article  Google Scholar 

  8. Cooker, M.J., Peregrine, D.H., Vidal, C., Dold, J.W.: The interaction between a solitary wave and a submerged semicircular cylinder. J. Fluid Mech. 215, 1–22 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deborde, J., Milcent, T., Lubin, P., Glockner, S.: Simulations of the interaction of solitary waves and elastic structures with a fully Eulerian method. Water Waves 2, 433–466 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deike, L.: Mass transfer at the ocean–atmosphere interface: the role of wave breaking, droplets, and bubbles. Ann. Rev. Fluid Mech. 54(1), 191–224 (2022)

    Article  MATH  Google Scholar 

  11. Desmons, F.: étude numérique du déferlement de vagues capillo-gravitaires. Ph.D. thesis, Université de Bordeaux, retrieved from https://tel.archives-ouvertes.fr/tel-03204107 (2021)

  12. Desmons, F., Coquerelle, M.: A generalized high-order momentum preserving (homp) method in the one-fluid model for incompressible two phase flows with high density ratio. J. Comput. Phys. 437, 110322 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Galvin, C.J.: Breaker type classification on three laboratory beaches. J. Geophys. Res. 73, 3651–3659 (1968)

    Article  Google Scholar 

  14. Goda, K.: A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows. J. Comput. Phys. 30(1), 76–95 (1979)

    Article  MATH  Google Scholar 

  15. Gourlay, M.R.: Wave transformation on a coral reef. Coast. Eng. 23(1), 17–42 (1994)

    Article  Google Scholar 

  16. Gourlay, M.R.: Wave set-up on coral reefs. 1. set-up and wave-generated flow on an idealised two dimensional horizontal reef. Coast. Eng. 27(3), 161–193 (1996)

    Article  MathSciNet  Google Scholar 

  17. Gourlay, M.R.: Wave set-up on coral reefs. 2. set-up on reefs with various profiles. Coast. Eng. 28(1), 17–55 (1996)

    Article  Google Scholar 

  18. Gourlay, M.R., Colleter, G.: Wave-generated flow on coral reefs-an analysis for two-dimensional horizontal reef-tops with steep faces. Coast. Eng. 52(4), 353–387 (2005)

    Article  Google Scholar 

  19. Hara, M., Yasuda, T., Sakakibara, Y.: Characteristics of a solitary wave breaking caused by a submerged obstacle. Coast. Eng. Proc. 1(23), 253–266 (1992)

  20. Helluy, P., Gollay, F., Grilli, S.T., Seguin, N., Lubin, P., Caltagirone, J.-P., Vincent, S., Drevard, D., Marcer, R.: Numerical simulations of wave breaking. Math. Model. Numer. Anal. 39(3), 591–608 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hsiao, S.-C., Lin, T.-C.: Tsunami-like solitary waves impinging and overtopping an impermeable seawall: experiment and rans modeling. Coast. Eng. 57, 1–18 (2010)

    Article  MathSciNet  Google Scholar 

  22. Huang, C.-J., Chang, H.-H., Hwung, H.-H.: Structural permeability effects on the interaction of a solitary wave and a submerged breakwater. Coast. Eng. 49(1), 1–24 (2003)

    Article  Google Scholar 

  23. Kalisch, H., Ricchiuto, M., Bonneton, P., Colin, M., Lubin, P.: Introduction to the special issue on breaking waves. Eur. J. Mech. B Fluids 73, 1–5 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kazolea, M., Delis, A.I., Synolakis, C.E.: Numerical treatment of wave breaking on unstructured finite volume approximations for extended boussinesq-type equations. J. Comput. Phys. 271, 281–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kazolea, M., Ricchiuto, M.: On wave breaking for boussinesq-type models. Ocean Model. 123, 16–39 (2018)

    Article  Google Scholar 

  26. Kiger, K.T., Duncan, J.H.: Air-entrainment mechanisms in plunging jets and breaking waves. Ann. Rev. Fluid Mech. 44, 563–596 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lee, J.-J., Skjelbreia, J.E., Raichlen, F.: Measurements of velocities in solitary waves. J. Waterw. Port Coast. Ocean Div. WW2(108), 200–218 (1982)

    Article  Google Scholar 

  28. Liu, P.L.-F., Cheng, Y.: A numerical study of the evolution of a solitary wave over a shelf. Phys. Fluids 13(6), 1660–1667 (2001)

    Article  MATH  Google Scholar 

  29. Losada, M.A., Vidal, C., Medina, R.: Experimental study of the evolution of a solitary wave at an abrupt junction. J. Geophys. Res. Oceans 94(C10), 14557–14566 (1989)

    Article  Google Scholar 

  30. Lubin, P.: Large eddy simulation of plunging breaking waves. Ph.D. thesis, Université Bordeaux I, in English (2004)

  31. Lubin, P., Chanson, H.: Are breaking waves, bores, surges and jumps the same flow? Environ. Fluid Mech. 17, 47–77 (2017)

    Article  Google Scholar 

  32. Lubin, P., Chanson, H., Glockner, S.: Large eddy simulation of turbulence generated by a weak breaking tidal bore. Environ. Fluid Mech. 10(5), 587–602 (2010)

    Article  MATH  Google Scholar 

  33. Lubin, P., Glockner, S.: Numerical simulations of three-dimensional plunging breaking waves: generation and evolution of aerated vortex filaments. J. Fluid Mech. 767, 364–393 (2015)

    Article  MathSciNet  Google Scholar 

  34. Lubin, P., Glockner, S., Kimmoun, O., Branger, H.: Numerical study of the hydrodynamics of regular waves breaking over a sloping beach. Eur. J. Mech. B Fluids 30(6), 552–564 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lubin, P., Lemonnier, H.: Propagation of solitary waves in constant depths over horizontal beds. Multiph. Sci. Technol. 16(1–3), 237–248 (2004)

    Google Scholar 

  36. Lubin, P., Vincent, S., Abadie, S., Caltagirone, J.-P.: Three-dimensional large eddy simulation of air entrainment under plunging breaking waves. Coast. Eng. 53(8), 631–655 (2006)

    Article  Google Scholar 

  37. Lubin, P., Vincent, S., Caltagirone, J.-P.: On the Navier–Stokes equations simulation of the head-on collision between two surface solitary waves. C. R. Mécanique 333(4), 351–357 (2005)

    Article  MATH  Google Scholar 

  38. Massel, S.R., Gourlay, M.R.: On the modelling of wave breaking and set-up on coral reefs. Coast. Eng. 39(1), 1–27 (2000)

    Article  Google Scholar 

  39. Mayer, R.H., Kriebel, D.L.: Wave runup on composite-slope and concave beaches. In: Proceedings of 24th International Conference Coastal Engineering, pp. 2325–2339 (1994)

  40. Mutsuda, H., Yasuda, T.: Numerical simulation of turbulent air-water mixing layer within surf-zone. In: Proceedings of 27th International Conference Coastal Engineering, pp. 755–768 (2000)

  41. Owkes, M., Desjardins, O.: A mesh-decoupled height function method for computing interface curvature. J. Comput. Phys. 281, 285–300 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Peregrine, D.H.: Breaking waves on beaches. Annu. Rev. Fluid Mech. 15, 149–178 (1983)

    Article  Google Scholar 

  43. Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228(16), 5838–5866 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Popinet, S.: Numerical models of surface tension. Ann. Rev. Fluid Mech. 50(1), 49–75 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Robertson, B., Hall, K., Zytner, R., Nistor, I.: Breaking waves: review of characteristic relationships. Coast. Eng. J. 55(1), 13500021–135000240 (2013)

    Article  Google Scholar 

  46. Seabra-Santos, F.J., Renouard, D.P., Temperville, A.M.: Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. J. Fluid Mech. 176, 117–134 (1997)

    Article  Google Scholar 

  47. Svendsen, I.A.: Analysis of surf zone turbulence. J. Geophys. Res. 92(C5), 5115–5124 (1987)

    Article  Google Scholar 

  48. Svendsen, I.A., Putrevu, U.: Surf-zone Hydrodynamics, Advances in Coastal and Ocean Engineering, vol. 2, pp. 1–78. World Scientific, Singapore (1996)

    Book  Google Scholar 

  49. Whitam, G.B.: Linear and Non-linear Waves. Wiley-Interscience Publication, New York (1974)

    Google Scholar 

  50. Wroniszewski, P.A., Verschaeve, C.G.J., Pedersen, K.G.: Benchmarking of Navier–Stokes codes for free surface simulations by means of a solitary wave. Coast. Eng. 91, 1–17 (2014)

    Article  Google Scholar 

  51. Xu, J.Y., Liu, S.X., Li, J.X., Jia, W.: Experimental study of wave propagation characteristics on a simplified coral reef. J. Hydrodyn. 32, 385–397 (2020)

    Article  Google Scholar 

  52. Yasuda, T., Hara, M.: Breaking and reflection of a steep solitary wave caused by a submerged obstacle. Coast. Eng. Proc. 1(22), 923–934 (1990)

  53. Yasuda, T., Mutsuda, H., Mizutani, N.: Kinematics of overturning solitary waves and their relations to breaker types. Coast. Eng. 29, 317–346 (1997)

    Article  Google Scholar 

  54. Yasuda, T., Mutsuda, H., Mizutani, N., Matsuda, H.: Relationships of plunging jet size to kinematics of breaking waves with spray and entrained air bubbles. Coast. Eng. J. 41(2), 269–280 (1999)

    Article  Google Scholar 

  55. Yasuda, T., Mutsuda, H., Oya, A., Tada, A., Fukumoto, T.: A new type breaker forming a giant jet and its decaying properties. In: Proceedings 25th International Conferences Coastal Engineering, pp. 300–313 (1996)

Download references

Acknowledgements

This study was carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the “Investments for the future” Programme IdEx Bordeaux-SysNum (ANR-10-IDEX-03-02). The authors wish to thank the Aquitaine Regional Council for the financial support towards a 432-processor cluster investment, located in the I2M laboratory. This work was granted access to the HPC resources of CINES, under allocation A0012A06104 made by GENCI (Grand Equipement National de Calcul Intensif). Computer time for this study was also provided by the computing facilities MCIA (Mésocentre de Calcul Intensif Aquitain) of the Université de Bordeaux and of the Université de Pau et des Pays de l’Adour.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Lubin.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desmons, F., Lubin, P. Numerical Simulations of Waves Breaking over a Rectangular Submerged Reef Consisting of a Double Step: Analogies with massive Natural Wave Breaking over Abrupt Bathymetries. Water Waves 4, 379–407 (2022). https://doi.org/10.1007/s42286-022-00067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42286-022-00067-3

Keywords

Navigation