Skip to main content
Log in

Fully Nonlinear Potential Flow Simulations of Wave Shoaling Over Slopes: Spilling Breaker Model and Integral Wave Properties

  • Original Article
  • Published:
Water Waves Aims and scope Submit manuscript

Abstract

A spilling breaker model (SBM) is implemented in an existing two-dimensional (2D) numerical wave tank (NWT), based on fully nonlinear potential flow (FNPF) theory and the boundary element method (BEM), in which an absorbing surface pressure is specified over the crest of impending breaking waves (detected based on a maximum front slope criterion) to simulate the power dissipated during breaking. The latter is calibrated to match that of a hydraulic jump of parameters identical to local wave properties (height, celerity, \(\ldots \)). Although this model is not aimed at being fully physical in the surfzone, it allows more accurately simulating properties of fully nonlinear shoaling waves than standard empirical absorbing beaches (AB). After assessing the convergence with the discretization of 2D-NWT results for strongly nonlinear shoaling waves, simulations are first validated based on laboratory experiments for non-breaking and breaking waves, shoaling up a mild slope; a good agreement is found between both. The NWT is then used to compute fully nonlinear local (height, celerity, asymmetry) and integral (mean-water-level, radiation stress) properties of periodic waves shoaling over mild slopes. Discrepancies with standard results of wave theories are discussed in light of fully nonlinear effects modeled in the NWT. While only periodic waves are considered here, the SBM could be applied to shoaling irregular waves, for which the breaking point location will constantly vary, which would be advantageous compared to an AB fixed in space. For such cases, besides its more physical energy absorption, the SBM would allow better preventing wave overturning that may occur far from shore due to nonlinear wave–wave interactions and otherwise interrupt the FNPF–NWT simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

AB:

Absorbing beach

AP:

Absorbing piston wavemaker

BEM:

Boundary element method

BIE:

Boundary integral equation

BM:

Boussinesq model

BP:

Breaking point

FNPF:

Fully nonlinear potential flow

FSWT:

Fourier steady wave theory

LWT:

Linear wave theory

MII:

Middle interval interpolation

MWL:

Mean water level (wave-period averaged)

NWT:

Numerical wave tank

RMS:

Root mean square

SBM:

Spilling breaker model

SFW:

Stream function waves

VOF:

Volume of fluid

WM:

Wavemaker

References

  1. Abadie, S., Morichon, D., Grilli, S., Glockner, S.: Numerical simulation of waves generated by landslides using a multiple-fluid Navier–Stokes model. Coast. Eng. 57(9), 779–794 (2010)

    Google Scholar 

  2. Baker, G.R., Meiron, D.I., Orszag, S.A.: Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123, 477–501 (1982)

    MathSciNet  MATH  Google Scholar 

  3. Banari, A., Janssen, C., Grilli, S.T., Krafczyk, M.: Efficient GPGPU implementation of a Lattice Boltzmann model for multiphase flows with high density ratios. Comput. Fluids 93, 1–17 (2014a)

    MathSciNet  MATH  Google Scholar 

  4. Banari, A., Janssen, C.F., Grilli, S.T.: An efficient lattice Boltzmann multiphase model for 3D flows with large density ratios at high Reynolds numbers. Comput. Math. Appl. 68, 1819–1843 (2014b)

    MathSciNet  MATH  Google Scholar 

  5. Barthelemy, X., Banner, M.L., Peirson, W.L., Fedele, F., Allis, M., Dias, F.: On a unified breaking onset threshold for gravity waves in deep and intermediate depth water. J. Fluid Mech. 841, 463–488 (2018)

    MATH  Google Scholar 

  6. Beji, S., Battjes, J.A.: Experimental investigation of wave propagation over a bar. Coast. Eng. 19(1–2), 151–162 (1993)

    Google Scholar 

  7. Beji, S., Battjes, J.A.: Numerical simulation of nonlinear wave propagation over a bar. Coast. Eng. 23(1–2), 1–16 (1994)

    Google Scholar 

  8. Biausser, B., Fraunié, P., Grilli, S.T., Marcer, R.: Numerical analysis of the internal kinematics and dynamics of 3-D breaking waves on slopes. Intl. J. Offsh. Polar Eng. 14(4), 247–256 (2004)

    Google Scholar 

  9. Booij, N., Holthuijsen, L.H., Ris, R.C.: The SWAN wave model for shallow water. In: Proceedings of the 25th International Conference on Coastal Engineering (ICCE25, Orlando, USA, 9/96), pp. 668–676. ASCE edition (1997)

  10. Brown, S.A., Greaves, D.M., Magar, V., Conley, D.C.: Evaluation of turbulence closure models under spilling and plunging breakers in the surf zone. Coast. Eng. 114, 177–193 (2016)

    Google Scholar 

  11. Clamond, D., Fructus, D., Grue, J., Kristiansen, O.: An efficient model for three-dimensional surface wave simulations. Part II: Generation and absorption. J. Comput. Phys. 205, 686–705 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Clément, A.: Coupling of two absorbing boundary conditions for 2D time-domain simulations of free surface gravity waves. J. Comput. Phys. 26, 139–151 (1996)

    MATH  Google Scholar 

  13. Cointe, R.: Numerical simulation of a wave channel. Eng. Anal. Bound. Elements. 7(4), 167–177 (1990)

    Google Scholar 

  14. Dalrymple, R.A.: A finite amplitude wave on a linear shear current. J. Geophys. Res. 79(30), 4498–4504 (1974)

    Google Scholar 

  15. Dalrymple, R.A., Rogers, B.D.: Numerical modeling of water waves with the SPH method. Coast. Eng. 53(2–3), 141–147 (2006)

    Google Scholar 

  16. Dean, R.G., Dalrymple, R.A.: Water Wave Mechanics for Engineers and Scientists. World Scientific Publishing Inc., Singapore (1991)

    Google Scholar 

  17. Derakhti, M., Kirby, J.T., Shi, F., Ma, G.: Wave breaking in the surfzone and deep water in a non-hydrostatic RANS model. Part 1:Organized wave motions. Ocean Modell 107, 125–138 (2016)

    Google Scholar 

  18. Derakhti, M., Kirby, J.T., Shi, F., Ma, G.: Wave breaking in the surf zone and deep water in a non-hydrostatic RANS model. Part 2: Turbulence and mean circulation. Ocean Modell 107, 139–150 (2016)

    Google Scholar 

  19. Dold, J.W., Peregrine, D.H.: An efficient boundary integral method for steep unsteady water waves. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid Dynamics II, pp. 671–679. Clarendon Press, Oxford (1986)

    Google Scholar 

  20. Dombre, E., Benoit, M., Violeau, D., Peyrard, C., Grilli, S.T.: Simulation of floating structure dynamics in waves by implicit coupling of a fully nonlinear potential flow model and a rigid body motion approach. J. Ocean. Eng. Mar. Energy 1, 55–76 (2015)

    Google Scholar 

  21. Dommermuth, D.G., Yue, D.K.P.: A higher-order spectral method for the study of nonlinear water waves. J. Fluid Mech. 184, 267–288 (1987)

    MATH  Google Scholar 

  22. Dommermuth, D.G., Yue, D.K.P., Lin, W.M., Rapp, R.J., Chan, E.S., Melville, W.K.: Deep-water plunging breakers: a comparison between potential theory and experiments. J. Fluid Mech. 189, 423–442 (1988)

    MATH  Google Scholar 

  23. Ducrozet, G., Bonnefoy, F., Le Touzé, D., Ferrant, P.: Implementation and validation of nonlinear wavemaker models in a HOS numerical wave tank. Intl. J. Offsh. Polar Eng. 16(3), 161–167 (2006)

    Google Scholar 

  24. Ducrozet, G., Bonnefoy, F., Pérignon, Y.: Applicability and limitations of highly non-linear potential flow solvers in the context of water waves. Ocean Eng. 142, 233–244 (2017)

    Google Scholar 

  25. Fructus, D., Clamond, D., Grue, J., Kristiansen, O.: An efficient model for three-dimensional surface wave simulations. Part I: Free space problems. J. Comput. Phys. 205, 665–685 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Fochesato, C., Grilli, S.T., Dias, F.: Numerical modeling of extreme rogue waves generated by directional energy focusing. Wave Motion 44, 395–416 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Gentaz, L., Alessandrini, B.: Detection of wave breaking in a 2D viscous numerical wave tank. In: Proceedings of the 10th Offshore and Polar Engineering Conference on (ISOPE00, Seattle, USA, 5/2000), Vol III, pp. 263–270 (2000)

  28. Grilli, A.R., Westcott, G., Grilli, S.T., Kirby, J.T., Shi, F. : Individual wave effects on coastal structure damage during windstorms. In Proceedings of the 36th International Conference on Coastal Engineering (ICCE18; Baltimore, Jul 30–Aug 3), ASCE, 1(36), 14 (2018)

  29. Grilli, S.T.: Fully nonlinear potential flow models used for long wave runup prediction. In: Yeh, H., Liu, P., Synolakis, C. (eds.) Chapter in Long-Wave Runup Models, pp. 116–180. World Scientific Publishing, Singapore (1997)

    Google Scholar 

  30. Grilli, S.T.: Depth inversion in shallow water based on nonlinear properties of shoaling periodic waves. Coast. Eng. 35(3), 185–209 (1998)

    Google Scholar 

  31. Grilli, S.T.: On the Development and Application of Hybrid Numerical Models in Nonlinear Free Surface Hydrodynamics. In: Ferrant, P., Chen, X.B. (Eds.), Keynote lecture in Proceedings of the 8th International Conference on Hydrodynamics (Nantes, France, September 2008), pp. 21–50. ICHD2008 Local Organizing Committee Publications (2008)

  32. Grilli, S.T., Dias, F., Guyenne, P., Fochesato, C., Enet, F.: Progress in fully nonlinear potential flow modeling of 3D extreme ocean waves. In: Ma, Q.W. (ed.), Advances in Numerical Simulation of Nonlinear Water Waves (Vol. 11 in Series in Advances in Coastal and Ocean Engineering). World Scientific Publishing Co. Pte. Ltd., Singapore, pp. 75–128 (2010)

  33. Grilli, S.T., Gilbert, R., Lubin, P., Vincent, S., Astruc, D., Legendre, D., Duval, M., Kimmoun, O., Branger, H., Devrard, D., Fraunié, P.: Numerical modeling and experiments for solitary wave shoaling and breaking over a sloping beach. In: Proceedings of the 14th Offshore and Polar Engineering, Conference (ISOPE04, Toulon, France, 5/2004), pp. 306–312 (2004)

  34. Grilli, S.T., Guyenne, P., Dias, F.: A fully nonlinear model for three-dimensional overturning waves over arbitrary bottom. Intl. J. Numer. Methods Fluids 35(7), 829–867 (2001)

    MATH  Google Scholar 

  35. Grilli, S.T., Horrillo, J.: Numerical generation and absorption of fully nonlinear periodic waves. J. Eng. Mech. 123(10), 1060–1069 (1997a)

    Google Scholar 

  36. Grilli, S.T., Horrillo, J.: Fully nonlinear properties of periodic waves shoaling over mild slope. In: Proceedings of the 25th International Conference on Coastal Engineering (ICCE25, Orlando, USA, 9/96), Vol 1, pp. 717–730. ASCE edition (1997b)

  37. Grilli, S.T., Horrillo, J.: Shoaling of periodic waves over barred-beaches in a fully nonlinear numerical wave tank. Intl. J. Offshore Polar Eng. 9(4), 257–263 (1999)

    Google Scholar 

  38. Grilli, S.T., Losada, M.A., Martin, F.: Characteristics of solitary wave breaking induced by breakwaters. J. Waterway Port Coast. Ocean Eng. 120(1), 74–92 (1994)

    Google Scholar 

  39. Grilli, S.T., Skourup, J., Svendsen, I.A.: The modeling of highly nonlinear waves: a step toward the numerical wave tank. Invited paper In: Brebbia, C.A. (ed.) Proceedings of the 10th International Conference on Boundary Elements (BEM10, Southampton, England, 9/88) Vol. 1, pp. 549–564. Computational Mechanics Publication. Springer, Berlin (1988)

  40. Grilli, S.T., Skourup, J., Svendsen, I.A.: An efficient boundary element method for nonlinear water waves. Eng. Anal. Bound. Elemts. 6(2), 97–107 (1989)

    Google Scholar 

  41. Grilli, S.T., Subramanya, R.: Quasi-singular integrations in the modelling of nonlinear water waves. Eng. Anal. Bound. Elemts. 13(2), 181–191 (1994)

    Google Scholar 

  42. Grilli, S.T., Subramanya, R.: Recent Advances in the BEM Modeling of Nonlinear Water Waves. Chapter 4 in: Power, H. (ed.) Boundary Element Applications in Fluid Mechanics , pp. 91–122. Advances in Fluid Mechanics Series. Computational Mechanics Publication, Southampton (1995)

  43. Grilli, S.T., Subramanya, R.: Numerical modeling of wave breaking induced by fixed or moving boundaries. Comput. Mech. 17, 374–391 (1996)

    MathSciNet  MATH  Google Scholar 

  44. Grilli, S.T., Subramanya, R., Svendsen, I.A., Veeramony, J.: Shoaling of solitary waves on plane beaches. J. Waterway Port Coast. Ocean Eng. 120(6), 609–628 (1994)

    Google Scholar 

  45. Grilli, S.T., Svendsen, I.A.: Corner problems and global accuracy in the boundary element solution of nonlinear wave flows. Eng. Anal. Bound. Elemts. 7(4), 178–195 (1990)

    Google Scholar 

  46. Grilli, S.T., Svendsen, I.A., Subramanya, R.: Breaking criterion and characteristics for solitary waves on slopes. J. Waterway Port Coast. Ocean Eng. 123(3), 102–112 (1997)

    Google Scholar 

  47. Grilli, S.T., Svendsen, I.A., Subramanya, R.: Closure of : breaking criterion and characteristics for solitary waves on slopes. J. Waterway Port Coast. Ocean Eng. 124(6), 333–335 (1998)

    Google Scholar 

  48. Grilli, S.T., Vogelmann, S., Watts, P.: Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Eng. Anal. Bound. Elemts. 26(4), 301–313 (2002)

    MATH  Google Scholar 

  49. Grilli, S.T., Voropayev, S., Testik, F.Y. and Fernando, H.J.S.: Numerical modeling and experiments of wave shoaling over buried cylinders in sandy bottom. In: Proceedings of the 13th Offshore and Polar Engineering Conference (ISOPE03, Honolulu, USA, May 2003), pp. 405–412 (2003)

  50. Grilli, S.T., Watts, P.: Modeling of waves generated by a moving submerged body. Applications to underwater landslides. Eng. Anal. Bound. Elemts. 23, 645–656 (1999)

    MATH  Google Scholar 

  51. Guerber, E., Benoit, M., Grilli, S.T., Buvat, C.: A fully nonlinear implicit model for wave interactions with submerged structures in forced or free motion. Eng. Anal. Bound. Elemts. 36, 1151–1163 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Guignard, S., Grilli, S.T., Marcer, R., Rey, V.: Computation of shoaling and breaking waves in nearshore areas by the coupling of BEM and VOF methods. In: Proceedings of the 9th Offshore and Polar Engineering Conference on (ISOPE99, Brest, France, 5/1999), Vol III, pp. 304–309 (1999)

  53. Guignard, S., Grilli, S.T.: Modeling of shoaling and breaking waves in a 2D-NWT by using a spilling breaker model. In: Proceedings of the 11th Offshore and Polar Engineering Conference on (ISOPE01, Stavanger, Norway, June 2001), Vol III, pp. 116–123 (2001)

  54. Guignard, S., Marcer, R., Rey, V., Kharif, C., Fraunié, P.: Solitary wave breaking on sloping beaches: 2-D two phase flow numerical simulation by SL-VOF method. Eur. J. Mech. B Fluids 20(1), 57–74 (2001)

    MathSciNet  MATH  Google Scholar 

  55. Guyenne, P., Grilli, S.T.: Numerical study of three-dimensional overturning waves in shallow water. J. Fluid Mech. 547, 361–388 (2006)

    MathSciNet  MATH  Google Scholar 

  56. Hansen, J.B., Svendsen, I.A.: Regular waves in shoaling water. Experimental data. Series paper no. 21. Institute of Hydrodynamics and Hydraulic Engineering. Technical University of Denmark (1979)

  57. Harris, J.C., Kuznetsov, K., Peyrard, C., Mivehchi, A., Grilli, S.T., Benoit, M.: Simulation of wave forces on a gravity based foundation by a BEM based on fully nonlinear potential flow. In: Proceedings of the 27th Offshore and Polar Engineering Conference on (ISOPE17, San Francsico, USA. 6/2017), International Society of Offshore and Polar Engineering, pp. 1,033–1,040 (2017)

  58. Helluy, P., Golay, F., Caltagirone, J.-P., Lubin, P., Vincent, S., Drevard, D., Marcer, R., Seguin, N., Grilli, S.T., Lesage, A.-C., Dervieux, A.: Numerical simulations of wave breaking. Math. Model. Num. Anal. 39(3), 591–607 (2005)

    MathSciNet  MATH  Google Scholar 

  59. Higuera, P., Lara, J.L., Losada, I.J.: Realistic wave generation and active wave absorption for Navier–Stokes models: application to OpenFOAM. Coast. Eng. 71, 102–118 (2013)

    Google Scholar 

  60. Horrillo, J., Wood, A., Kim, G.-B., Parambath, A.: A simplified 3-D Navier–Stokes numerical model for landslide-tsunami: application to the Gulf of Mexico. J. Geophys. Res. Oceans 118(12), P6934–6950 (2013)

    Google Scholar 

  61. Janssen, C.F., Grilli, S.T., Krafczyk, M.: On enhanced non-linear free surface flow simulations with a hybrid LBM-VOF approach. Comput. Math. Appl. 65(2), 211–229 (2013)

    MathSciNet  MATH  Google Scholar 

  62. Jonsson, L.G., Ameborg, L.: Energy properties and shoaling of higher-order stokes waves on a current. Ocean Eng. 22(8), 819–857 (1995)

    Google Scholar 

  63. Karambas, T.V., Koutitas, C.: A breaking wave propagation model based on the Boussinesq equations. Coast. Eng. 18, 1–19 (1992)

    Google Scholar 

  64. Kennedy, A.B., Chen, Q., Kirby, J.T., Dalrymple, R.A.: Boussinesq modeling of wave transformation, breaking, and runup. I: 1D. J. Waterway Port Coast. Ocean Eng. 126(1), 39–47 (2000)

    Google Scholar 

  65. Kennedy, A.B., Fenton, J.D.: A fully-nonlinear numerical method for wave propagation over topography. Coast. Eng. 32, 137–162 (1997)

    Google Scholar 

  66. Khait, A., Shemer, L.: On the kinematic criterion for the inception of breaking in surface gravity waves: fully nonlinear numerical simulations and experimental verification. Phys. Fluids 30(5), 057103 (2018)

    Google Scholar 

  67. Kirby, J.T.: Boussinesq models and their application to coastal processes across a wide range of scales. J. Waterway Port Coast. Ocean Eng. 142(6), 03116005 (2016)

    Google Scholar 

  68. Klopman, G.: A note on integral properties of periodic gravity waves in the case of a non-zero mean Eulerian velocity. J. Fluid Mech. 211, 609–615 (1990)

    MATH  Google Scholar 

  69. Lachaume, C., Biausser, B., Fraunié, P., Grilli, S.T., Guignard, S.: Modeling of breaking and post-breaking waves on slopes by coupling of BEM and VOF methods. In: Proceedings of the 13th Offshore and Polar Engineering Conference (ISOPE03, Honolulu, USA, May 2003), pp. 353–359 (2003)

  70. Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1932)

    MATH  Google Scholar 

  71. Li, N., Roeber, V., Yamazaki, Y., Heitmann, T.W., Bai, Y., Cheung, K.F.: Integration of coastal inundation modeling from storm tides to individual waves. Ocean Modell. 83, 26–42 (2014)

    Google Scholar 

  72. Lin, P., Liu, P.L.F.: A numerical study of breaking waves in the surf zone. J. Fluid Mech. 359, 239–264 (1998)

    MATH  Google Scholar 

  73. Lubin, P., Vincent, S., Abadie, S., Caltagirone, J.P.: Three-dimensional large eddy simulation of air entrainment under plunging breaking waves. Coast. Eng. 53(8), 631–655 (2006)

    Google Scholar 

  74. Lubin, P., Glockner, S.: Numerical simulations of three-dimensional plunging breaking waves: generation and evolution of aerated vortex filaments. J. Fluid Mech. 767, 364–393 (2015)

    MathSciNet  Google Scholar 

  75. Longuet-Higgins, M.S., Cokelet, E.D.: The deformation of steep surface waves on water - I. A numerical method of computation. Proc. R. Soc. Lond. A 350, 1–26 (1976)

    MathSciNet  MATH  Google Scholar 

  76. Lynett, P.J.: Nearshore wave modeling with high-order Boussinesq-type equations. J. Waterway Port Coast. Ocean Eng. 132(5), 348–357 (2006)

    Google Scholar 

  77. Madsen, P.A., Sorensen, O.R., Schäffer, H.A.: Surf zone dynamics simulated by a Boussinesq type model. Part I. Model description and cross-shore motion of regular waves. Coast. Eng. 32, 255–287 (1997)

    Google Scholar 

  78. Mivehchi, A., Harris, J.C., Grilli, S.T., Dahl, J.M., O’Reilly, C.M., Kuznetsov, K., Janssen, C.F.: A hybrid solver based on efficient BEM-potential and LBM-NS models: recent BEM developments and applications to naval hydrodynamics. In: Proceedings of 27th Offshore and Polar Engineering Conference on (ISOPE17, San Francsico, USA. 6/2017), International Society of Offshore and Polar Engineering, pp. 721–728 (2017)

  79. Mivehchi, A.: Experimental and numerical simulations of fluid body interaction problems. Ph D Dissertation, University of Rhode Island, pp. 121 (2018)

  80. Nadaoka, K., Ono, O.: Time-dependent depth-integrated turbulence modeling of breaking waves. In: Proceedings of 26th International Conference on Coastal Engineering (ICCE26, Copenhagen, Denmark, 6/1998), Vol. 1, pp. 86-97 (1999)

  81. New, A.L., McIver, P., Peregrine, D.H.: Computations of overturning waves. J. Fluid Mech. 150, 233–251 (1985)

    MATH  Google Scholar 

  82. Nimmala, S.B., Yim, S.C., Grilli, S.T.: An efficient parallelized 3-D FNPF numerical wave tank for large-scale wave basin experiment simulation. J. Offshore Mech. Arctic Eng. 135(2), 021104 (2013)

    Google Scholar 

  83. Ning, D.Z., Bin, T.: Numerical simulation of fully nonlinear irregular wave tank in three dimension. Int. J. Numer. Methods Fluids 53(12), 1847–1862 (2007)

    MATH  Google Scholar 

  84. Ohyama, T., Nadaoka, K.: Development of a numerical wave tank for analysis of nonlinear and irregular wave fields. Fluid Dyn. Res. 8, 231–251 (1991)

    Google Scholar 

  85. Ohyama, T., Beji, S., Nadaoka, K., Battjes, J.A.: Experimental verification of numerical model for nonlinear wave evolution. J. Waterway Port Coast. Ocean Eng. 120(6), 637–644 (1994)

    Google Scholar 

  86. Papoutsellis, C.E., Yates, M.L., Simon, B., Benoit, M.: Fully nonlinear modeling of nearshore wave propagation including the effects of wave breaking. Coastal Engineering Proceedings, 1(36), 78. In: Proceedings of the 36th International Conference on Coastal Engineering (ICCE18; Baltimore, Jul 30–Aug 3), ASCE 1(36), 78 (2018)

  87. Peregrine, D.H.: Long waves on a beach. J. Fluid Mech. 27(4), 815–827 (1967)

    MATH  Google Scholar 

  88. Raoult, C., Benoit, M., Yates, M.L.: Validation of a fully nonlinear and dispersive wave model with laboratory non-breaking experiments. Coast. Eng. 114, 194207 (2016)

    Google Scholar 

  89. Rienecker, M.M., Fenton, J.D.: A Fourier approximation method for steady water waves. J. Fluid Mech. 104, 119–137 (1981)

    MATH  Google Scholar 

  90. Roeber, V., Cheung, K.F., Kobayashi, M.H.: Shock-capturing Boussinesq-type model for nearshore wave processes. Coast. Eng. 57(4), 407–423 (2010)

    Google Scholar 

  91. Roelvink, J.A., Reniers, A.J., Van Dongeren, A., Van Thiel de Vries, J., McCall, R., Lescinski, J.: Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engng 56(11–12), 1133–1152 (2009)

    Google Scholar 

  92. Schambach, L., Grilli, A.R., Grilli, S.T., Hashemi, R., King, J.: Assessing the impact of extreme storms on barrier beaches along the Atlantic coastline: Application to the southern Rhode Island coast. Coast. Eng. 133, 26–42 (2018)

    Google Scholar 

  93. Schäffer, H.A., Madsen, P.A., Deigaard, R.: A Boussinesq model for wave breaking in shallow water. Coast. Eng. 20, 185–202 (1993)

    Google Scholar 

  94. Seiffert, B.R., Ducrozet, G., Bonnefoy, F.: Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking onset. Ocean Modell. 119, 94–104 (2017)

    Google Scholar 

  95. Shi, F., Kirby, J.T., Harris, J.C., Geiman, J.D., Grilli, S.T.: A high-order adaptive time-stepping TVD solver for boussinesq modeling of breaking waves and coastal inundation. Ocean Modell. 43–44, 36–51 (2012)

    Google Scholar 

  96. Sitanggang, K.I., Lynett, P.J.: Multi-scale simulation with a hybrid Boussinesq-RANS hydrodynamic model. Int. J. Numer. Methods Fluids 62(9), 1013–1046 (2010)

    MathSciNet  MATH  Google Scholar 

  97. Skotner, C., Apelt, C.J.: Application of a Boussinesq model for the computation of breaking waves. Part 1: Development andverification. Ocean Eng. 26, 907–926 (1999)

    Google Scholar 

  98. Skotner, C., Apelt, C.J.: Application of a Boussinesq model for the computation of breaking waves. Part 2: wave-induced set down and setup on a submerged coral reef. Ocean Eng. 26, 927–947 (1999)

    Google Scholar 

  99. Sobey, R.J., Bando, K.: Variations on higher-order shoaling. J. Waterway Port Coast. Ocean Eng. 117(4), 348–368 (1991)

    Google Scholar 

  100. Subramani, A.K., Beck, R.F., Schultz, W.W.: Suppression of wave breaking in nonlinear water wave computations. In: Proceedings of the 13th International Workshop Water Waves and Floating Bodies (Alphen aan den Rijn, The Netherlands, 3/1998), Delft University of Technology, pp. 139–141 (1998)

  101. Sung, H.G., Grilli, S.T.: BEM computations of 3D fully nonlinear free surface flows caused by advancing surface disturbances. Intl. J. Offshore Polar Eng. 18(4), 292–301 (2008)

    Google Scholar 

  102. Stansell, P., MacFarlane, C.: Experimental investigation of wave breaking criteria based on wave phase speeds. J. Phys. Oceanogr. 32(5), 1269–1283 (2002)

    Google Scholar 

  103. Svendsen, I.A., Grilli, S.T.: Nonlinear waves on steep slopes. J. Coast. Res. SI 7, 185–202 (1990)

    Google Scholar 

  104. Svendsen, I.A., Madsen, P.A.: A turbulent bore on a beach. J. Fluid Mech. 148, 73–96 (1984)

    MATH  Google Scholar 

  105. Svendsen, I.A., Madsen, P.A., Hansen, J.B.: Wave characteristics in the surf zone. In: Proceedings of the 16th International Coastal Engineering Conference on, ASCE, pp. 521–539 (1978)

  106. Svendsen, I.A., Putrevu, U.: Surf zone hydrodynamics. In: Liu, P.L.-F. (ed.) Advances in Coastal and Ocean Engineering, vol. 2, pp. 1–78. World Scientific Publishing Inc., Singapore (1996)

    Google Scholar 

  107. Svendsen, I.A., Veeramony, J., Bakunin, J., Kirby, J.T.: The flow in weak turbulent hydraulic jumps. J. Fluid Mech. 418, 25–57 (2000)

    MATH  Google Scholar 

  108. Tanaka, M.: The stability of solitary waves. Phys. Fluids 29(5), 650–655 (1986)

    MathSciNet  MATH  Google Scholar 

  109. Veraamony, J., Svendsen, I.A.: A Boussinesq model for breaking waves: comparisons with experiments. In: Proceedings of the 26th International Conference on Coastal Engineering I(CCE26, Copenhagen, Denmark, 6/1998), ASCE, Vol. 1, pp. 258–271 (1999)

  110. Veraamony, J., Svendsen, I.A.: The flow in surf-zone waves. Coast. Eng. 39, 93–122 (2000)

    Google Scholar 

  111. Vinje, T., Brevig, P.: Numerical simulation of breaking waves. Adv. Water Res. 4, 77–82 (1981)

    Google Scholar 

  112. Wang, P., Yao, Y., Tulin, M.P.: An efficient numerical tank for non-linear water waves, based on the multi-subdomain approach with BEM. Intl. J. Numer. Methods Fluids 20, 1315–1336 (1995)

    MATH  Google Scholar 

  113. Wei, J., Kirby, J.T., Grilli, S.T., Subramanya, R.: A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech. 294, 71–92 (1995)

    MathSciNet  MATH  Google Scholar 

  114. Xue, M., Xü, H., Liu, Y., Yue, D.K.P.: Computations of fully nonlinear three-dimensional wave–wave and wave–body interactions. Part 1. Dynamics of steep three-dimensional waves. J. Fluid Mech. 438, 11–39 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Office of Naval Research (ONR), initially under Grant N00014-99-1-0439 and, more recently Grants N00014-13-10687 and N00014-16-12970, from the US Department of the Navy, Office of the Chief of Naval Research. The information reported in this work does not necessarily reflect the position of the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan T. Grilli.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grilli, S.T., Horrillo, J. & Guignard, S. Fully Nonlinear Potential Flow Simulations of Wave Shoaling Over Slopes: Spilling Breaker Model and Integral Wave Properties. Water Waves 2, 263–297 (2020). https://doi.org/10.1007/s42286-019-00017-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42286-019-00017-6

Keywords

Navigation