Skip to main content
Log in

Radiation-Induced Grafting of Styrene onto Polyvinylfluoride (PVF) Films: Impact of Grafting Conditions on Grafted Film Properties

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This study aimed to investigate the modification of commercial polyvinylfluoride (PVF) with a thickness of 100 μm through graft polymerization of styrene induced by radiation. The target was to achieve a desired degree of grafting (DOG) to develop a polymer electrolyte membrane for fuel cell applications. The grafting process was carried out simultaneously at room temperature and under a nitrogen atmosphere using a 60 Co gamma radiation facility. Various reaction conditions such as the type of solvent, monomer concentration, irradiation dose, and dose rate were explored to optimize the grafting process. The gathered results proved that the grafting parameters had substantial effect on the grafting yield. To gain a deeper understanding of the graft polymerization, a kinetic study was conducted under different reaction conditions. The findings allowed for the establishment of a relationship between the initial rate of grafting, dose rate, and monomer concentration, which can be expressed by the following equation: \( \frac{\text{d}{\text{G}}_{0}}{\text{dt}}=\alpha [M{]}^{2.14}[D{]}^{0.49}\) This equation provides valuable insights into the kinetics of the graft polymerization process, enabling better control and optimization of the reaction for future applications as a polymer electrolyte membrane in fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ang WL, Mohammad AW, Hilal N, Leo CPA (2015) Review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination 363:2–18

    Article  CAS  Google Scholar 

  2. Roy S, Ragunath S Emerging Membrane Technologies for Water and Energy sustainability: future prospects (2018) constrains and challenges. Energies 11, 2997

  3. Le NL, Nunes SP (2016) Materials and membrane technologies for water and energy sustainability. Sustain Mater Technol 7:1–28

    CAS  Google Scholar 

  4. Mabrouk W, Ogier L, Matoussi F, Sollogoub C, Vidal S, Dachraoui M, Fauvarque JF (2011) Preparation of new proton exchange membranes using sulfonated poly(ethersulfone) modified by octylamine (SPESOS). Mater Chem Phys 128:456–463

    Article  CAS  Google Scholar 

  5. Mabrouk W, Ogier L, Vidal S, Sollogoub C, Matoussi F, Dachraoui M, Fauvarque JF (2012) Synthesis and characterization of polymer blends of sulfonated polyethersulfone and sulfonated polyethersulfone octylsulfonamide for PEMFC applications. Fuel Cells 2:179–187

    Article  Google Scholar 

  6. Mozetič M (2019) Surface modification to Improve properties of materials. Materials 12:441. https://doi.org/10.3390/ma12030441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Robeson LM (2012) Polymer Membranes. Polymer Science: A Comprehensive Reference, 325–347. https://doi.org/10.1016/b978-0-444-53349-4.00211-9

  8. Bharti V, Singh PK, Sharma JP (2020) Development of polymer electrolyte membranes based on biodegradable polymer. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.06.463

  9. Nasrollahi N, Ghalamchi L, Vatanpour V, Khataee A, Yousef M (2022) Novel polymeric additives in the preparation and modification of polymeric membranes: a comprehensive review. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2022.02.036

    Article  Google Scholar 

  10. Nagandran S, Goh PS, Ismail AF, Wong TW, Binti Wan Dagang WRZ (2020) The recent progress in modification of polymeric membranes using Organic macromolecules for Water Treatment. Symmetry 12:239. https://doi.org/10.3390/sym12020239

    Article  CAS  Google Scholar 

  11. Ashfaq A, Clochard MC, Coqueret X, Dispenza C, Driscoll MS, Ulański P, Al-Sheikhly M (2020) Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers, 12: 2877. https://doi.org/10.3390/polym12122877

  12. Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers techniques, factors and applications. Prog Polym Sci 29:767–814

    Article  CAS  Google Scholar 

  13. Pasanphan W, Haema K, Tangthong T, Piroonpan T (2014) Modification of chitosan onto PE by irradiation in salt solutions and possible use as Cu2þ complex film for pest snail control. J Appl Polym Sci 131:41204

    Article  Google Scholar 

  14. Li MC, Lee JK, Cho UR (2012) Synthesis, characterization, and enzymatic degradation of starch-grafted poly (methyl methacrylate) copolymer films. J Appl Polym Sci 125:405–e414

    Article  CAS  Google Scholar 

  15. Baranov IA, Andriyanova NA, Mochalova AE, Sibirkin AA, Batenkin MAL, Smirnova A (2012) Grafting polymerization of acrylonitrile and methyl acrylate on chitosan in the presence of cobalt(III) complexes. Polym Sci Ser B 54:167–174

    Article  CAS  Google Scholar 

  16. Pandey PK, Srivastava A, Tripathy J, Behari K (2006) Graft copolymerization of acrylic acid onto guar gum initiated by vanadium (V) mercaptosuccinic acid redox pair. Carbohydr Polym 65:414–420

    Article  CAS  Google Scholar 

  17. Singh V, Kumar P, Sanghi R (2012) Use of microwave irradiation in the grafting modification of the polysaccharides e a review. Prog Polym Sci 37:340–364

    Article  CAS  Google Scholar 

  18. Bhattacharya A (2000) Radiation and industrial polymers. Prog Polym Sci 25:371–401

    Article  CAS  Google Scholar 

  19. Clough RL (2001) High-energy radiation and polymers: a review of commercial processes and emerging applications. Nucl Instrum Methods Phys Res Sect B 185:8–33

    Article  CAS  Google Scholar 

  20. Lacroix M, Khan R, Senna M, Sharmin N, Salmieri S, Safrany A (2014) Radiation grafting on natural films. Radiat Phys Chem 94:88–92

    Article  CAS  Google Scholar 

  21. Pino-Ramos VH, Meléndez-Ortiz HI, Ramos-Ballesteros A, Bucio E (2018) Radiation Grafting of biopolymers and synthetic polymers. Biopolymer Grafting: Appl 205–250. https://doi.org/10.1016/b978-0-12-810462-0.00006-5

  22. Kim B, Weaver A, Chumakov M, Pazos IM, Poster DL, Gaskell K, Al-Sheikhly M (2018) Mechanisms and characterization of the Pulsed Electron-Induced Grafting of Styrene onto Poly(tetrafluoroethylene-co-hexafluoropropylene) to prepare a polymer Electrolyte membrane. Radiat Res 190:309–321. https://doi.org/10.1667/rr15006.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sherazi TA, Guiver MD, Kingston D, Ahmad S, Kashmiri MA, Xue X (2010) Radiation-grafted membranes based on polyethylene for direct methanol fuel cells. J Power Sources 195:21–29

    Article  CAS  Google Scholar 

  24. Furtado Filho AAM, Gomes AS (2006) Copolymerization of Styrene onto Polyethersulfone films Induced by Gamma Ray Irradiation. Polym Bull 57:415–421. https://doi.org/10.1007/s00289-006-0574-7

    Article  CAS  Google Scholar 

  25. Kim BN, Lee DH, Han DH (2008) Characteristics of fuel cell membranes prepared by EB radiation grafting onto FEP with styrene derivatives, styrene and 2-methylstyrene. J Electrochem Soc 155:B680–B685

    Article  CAS  Google Scholar 

  26. Büchi FN, Gupta B, Haas O, Scherer GG (1995) Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells. Electrochim Acta 40:345–353. https://doi.org/10.1016/0013-4686(94)00274-5

    Article  Google Scholar 

  27. Chen JH, Asano M, Yamaki T, Yoshida M (2005) Preparation of sulfonated crosslinked PTFE- graft-poly (alkyl vinyl ether) membranes for polymer electrolyte membrane fuel cells by radiation processing. J Memb Sci 256:38–45

    CAS  Google Scholar 

  28. Nasef MM, Saidi H, Nor HM (2000) Proton exchange membranes prepared by simultaneous radiation grafting of styrene ontopoly(tetrafluoroethylene-co-hexafluoropropylene) films. I. Effect of grafting conditions. J Appl Polym Sci 76:220–227

    Article  CAS  Google Scholar 

  29. Becker W, Bothe M, Schmidt-Naake G (1999) Grafting of poly(styreneco- acrylonitrile) onto pre-irradiated FEP and ETFE films. Macromol Mater Eng 273:57–62

  30. Nasef MM, Hegazy ESA (2004) Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog Polym Sci 29:499–561

  31. Gubler L (2014) Polymer design strategies for radiation-grafted fuel cell membranes. Adv Energy Mater 4:1300827

    Article  Google Scholar 

  32. Nasef MM (2001) Effect of solvents on radiation-induced grafting of styrene onto fluorinated polymer films. Polym Int 50:338–346. https://doi.org/10.1002/pi.634

    Article  CAS  Google Scholar 

  33. Nasef MM (2014) Radiation-grafted membranes for polymer electrolyte fuel cells: current trends and future directions. Chem Rev 114:12278–12329

    Article  CAS  PubMed  Google Scholar 

  34. Kabanov VY (2004) Preparation of Polymer membranes for fuel cells by radiation graft polymerization. High Energy Chem 38:57–65

    Article  CAS  Google Scholar 

  35. Wang Y, Ruiz Diaz DF, Chen KS, Wang Z, Adroher XC (2020) Materials, technological status, and fundamentals of PEM fuel cells – A review. Mater Today 32:178–203. https://doi.org/10.1016/j.mattod.2019.06.005

    Article  CAS  Google Scholar 

  36. Nasef MM, Gürsel SA, Karabelli D, Güven O (2016) Radiation-grafted materials for energy conversion and energy storage applications. Prog Polym Sci 63:1–41

    Article  CAS  Google Scholar 

  37. Gürsel SA, Wokaun A, Scherer GG (2007) Influence of reaction parameters on grafting of styrene into poly (ethylene-alt-tetrafluoroethylene) films. Nucl Instruments Methods Phys Res Sect B Beam Interact Mater Atoms 265:198–203

    Article  Google Scholar 

  38. Lunkwitz K, Lappan U, Lehmann D (2000) Modification of fluoropolymers by means of electron beam irradiation. Radiat Phys Chem 57(99):373–376. https://doi.org/10.1016/S0969-806X

    Article  CAS  Google Scholar 

  39. Hegazy EA, Ishigaki I, Okamoto J (1981) Radiation grafting of acrylic acid onto fluorine-containing polymers. I. kinetic study of preirradiation grafting onto poly(tetrafluoroethylene). J Appl Polym Sci 26:3117–3124. https://doi.org/10.1002/app.1981.070260925

    Article  CAS  Google Scholar 

  40. Nasef MM, Saidi H, Nor HM, Foo OM (2000) Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto poly(tetrafluoroethylene-co-hexafluoropropylene) films. II. Properties of sulfonated membranes. J Appl Polym Sci. https://doi.org/10.1002/1097-4628. (20001227)78:14 < 2443::AID-APP30 > 3.0.CO;2-E

    Article  CAS  Google Scholar 

  41. Cardona F, George GA, Hill DJT, Rasoul F, Maeji J (2002) Copolymers obtained by the radiation-induced grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) substrates. 1. Preparation and structural investigation. Macromolecules 35:355–364. https://doi.org/10.1021/ma0022295

    Article  CAS  Google Scholar 

  42. Gubler L, Gürsel SA, Henkensmeier D, Wokaun A, Scherer GG (2009) Novel ETFE based radiation grafted poly (styrene sulfonic acid-co-methacrylonitrile) proton conducting membranes with increased stability. Electrochem Commun 11:941–944

  43. Bose S, Kuila T, Nguyen TXH, Kim NH, Lau KT, Lee JH (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36:813–843. https://doi.org/10.1016/j.progpolymsci.2011.01.003

    Article  CAS  Google Scholar 

  44. Subianto S, Pica M, Casciola M, Cojocaru P, Merlo L, Hards G et al (2013) Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells. J Power Sources 233:216–230. https://doi.org/10.1016/j.jpowsour.2012.12.121

    Article  CAS  Google Scholar 

  45. Wang L, Magliocca E, Cunningham EL, Mustain WE, Poynton SD, Escudero-Cid R et al (2017) An optimised synthesis of high performance radiation-grafted anion-exchange membranes. Green Chem 19:831–843. https://doi.org/10.1039/c6gc02526a

    Article  CAS  Google Scholar 

  46. Rohani R, Nasef MM, Saidi H, Dahlan KZM (2007) Effect of reaction conditions on electron induced graft copolymerization of styrene onto poly(ethylene-co-tetrafluoroethylene) films: kinetics study. Chem Eng J 132:27–35. https://doi.org/10.1016/j.cej.2007.01.011

    Article  CAS  Google Scholar 

  47. Zatoń M, Rozière J, Jones DJ (2017) Current understanding of Chemical degradation mechanisms of Perfluorosulfonic Acid membranes and their mitigation strategies: a review. Sustain Energy Fuels 1:409–438. https://doi.org/10.1039/C7SE00038C

    Article  Google Scholar 

  48. Golubenko DV, Korchagin OV, Voropaeva DY, Bogdanovskaya VA, Yaroslavtsev AB (2022) Membranes based on Polyvinylidene Fluoride and Radiation-Grafted Sulfonated Polystyrene and their performance in Proton-Exchange membrane fuel cells. Polymers 18:3833. https://doi.org/10.3390/polym14183833

    Article  CAS  Google Scholar 

  49. Golubenko DV, Malakhova VR, Yurova PA, Evsiunina MV, Stenina IA (2022) Effect of Sulfonation conditions on properties of Ion-conducting membranes based on polystyrene grafted on Gamma-irradiated Polyvinylidene Fluoride films. Membrane Technol Membrane 4:267–275. https://doi.org/10.1134/S2517751622040035

    Article  CAS  Google Scholar 

Download references

Funding

The authors express their gratitude for being financially supported by the International Atomic Energy Agency (IAEA) through research project agreement (IAEA RC F22072). Additionally, they acknowledgement is extended to Tunisian Ministry of Higher Education and Scientific Research for their valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira Zaouak.

Ethics declarations

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Conflict of Interest

The author declares no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaouak, A., Belgacem, C. & Ahlem, N. Radiation-Induced Grafting of Styrene onto Polyvinylfluoride (PVF) Films: Impact of Grafting Conditions on Grafted Film Properties. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00986-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00986-3

Keywords

Navigation