Skip to main content
Log in

High Performance Activated Carbon Based on Date Palm Fibers for Cu2+ Removal in Water

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The aim of the present study was to produce a date palm fibers-based activated carbon (DPFAC) using phosphoric acid as an activating agent. DPFAC has been studied as a promising adsorbent for the removal of copper ions from synthetic solutions. DPFAC characterization performed by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Brunauer–Emmett–Teller (BET) indicated that DPFAC morphology and texture were well-developed with various surface bonds and high specific surface area and average pore diameter (834.79 m2/g, 17.48 Å, repectively). The results of the kinetic adsorption test showed that DPFAC achieved high Cu2+ removal efficiency (94.47%) at equilibrium time (60 min). The kinetic data fitted perfectly with the pseudo-second-order model. Three intra-particle diffusion steps are implicated in the adsorption of Cu2+. Solution pH has a considerable influence on Cu2+ removal efficiency. The isotherm models (Langmuir, Freundlich, Redlich-Peterson and Sips) showed an adequate fit to the experimental points, proving that the transfer of Cu2+ onto the DPFAC surface was favorable. Langmuir model provided the best fit, with a maximum adsorption capacity of 48.59 mg/g. The thermodynamic study performed between 20°C and 50°C confirmed that the adsorption process is spontaneous and endothermic, and may involve physisorption enhanced by chemisorption. Based on tested reaction parameters, it is clear that the use of date palm fibers for the preparation of DPFAC was highly effective in removing copper ions from wastewater.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support this article appears in the article and in its online supplementary material.

References

  1. Ouakouak A, Youcef L (2016) Adsorption des ions Cu2+ sur un charbon actif en poudre et une bentonite sodique. LARHYSS J 27:39–61

    Google Scholar 

  2. Benalia MC, Youcef L, Bouaziz MG, Achour S, Menasra H (2022) Removal of heavy metals from industrial wastewater by chemical precipitation: mechanisms and sludge characterization. Arab J Sci Eng 47:5587–5599. https://doi.org/10.1007/s13369-021-05525-7

  3. Bumajdad A, Hasila P (2023) Surface modification of date palm activated carbonaceous materials for heavy metal removal and CO2 adsorption. Arab J Chem 16(1):104403. https://doi.org/10.1016/j.arabjc.2022.104403

    Article  CAS  Google Scholar 

  4. Singh V, Singh N, Rai SN, Kumar A, Singh AK, Singh MP, Sahoo A, Shekhar S, Vamanu E, Mishra V (2023) Heavy Metal Contamination in the Aquatic Ecosystem: Toxicity and Its Remediation Using Eco-Friendly Approaches. Toxics 11(147):1–15. https://doi.org/10.3390/toxics11020147

    Article  CAS  Google Scholar 

  5. Singh V, Singh N, Verma M, Kamal R, Tiwari R, Sanjay Chivate M, Rai SN, Kumar A, Singh A, Singh MP, Vamanu E, Mishra V (2022) Hexavalent-Chromium-Induced Oxidative Stress and the Protective Role of Antioxidants against Cellular Toxicity. Antioxidants 11(12), 2375:2–14. https://doi.org/10.3390/antiox11122375

  6. WHO (2008) Guidelines for drinking-water quality, Third edition: Volume1-Recommendations incorporating the first and second addenda, Geneva. https://www.who.int/publications/i/item/9789241547611

  7. JORA (Journal officiel de la république Algérienne) (2014) N °13, 7 Joumada El Aoula 1435 Correspondant au 09 Mars 2014. ANNEXE Paramètres de qualité de l’eau de consommation humaine. https://faolex.fao.org/docs/pdf/alg133820.pdf

  8. Potelon JL, Zysman K (1998) Le guide des analyses de l’eau potable. Éd. La Lettre du Cadre Territorial, Voiron, France

  9. Egbosiuba TC, Abdulkareem AS (2021) Highly efficient as-synthesized and oxidized multi-walled carbon nanotubes for copper (II) and zinc (II) ion adsorption in a batch and fixed-bed process. J Mater Res Technol 15:2848–2872. https://doi.org/10.1016/j.jmrt.2021.09.094

    Article  CAS  Google Scholar 

  10. Wongkoblap A, Ngernyen Y, Budsaereechai S, Charoenbood A (2013) Heavy metal removal from aqueous solution by using bentonite clay and activated carbon. In: Chemeca 2013: Challenging tomorrow. Engineers Australia, pp 689–694. https://search.informit.org/doi/10.3316/informit.9781922107077

  11. Egbosiuba TC, Egwunyenga M C, Tijani JO, Mustapha S, Abdulkareem AS, Kovo AS, Krikstolaityte V, Veksha A, Wagner M, Lisak G (2022) Activated multi-walled carbon nanotubes decorated with zero valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in a batch and continuous flow modes. J Hazard Mater 423, Part B, 126993. https://doi.org/10.1016/j.jhazmat.2021.126993

  12. Krstić V, Urošević T, Pešovski B (2018) A review on adsorbents for treatment of water and wastewaters containing copper ions. Chem Eng Sci 192:273–287. https://doi.org/10.1016/j.ces.2018.07.022

  13. Raninga M, Mudgal A, Patel V K, Patel J, Sinha MK (2023)Modification of activated carbon-based adsorbent for removal of industrial dyes and heavy metals: A review. Materials Today : Proc 77(Part 1): 286–294. https://doi.org/10.1016/j.matpr.2022.11.358

  14. Esfandiar N, Suri R, McKenzie ER (2022) Competitive sorption of Cd, Cr, Cu, Ni, Pb and Zn from stormwater runoff by five low-cost sorbents; Effects of co-contaminants, humic acid, salinity and pH. J Hazard Mater 423(Part A):126938. https://doi.org/10.1016/j.jhazmat.2021.126938

  15. Soudani A, Youcef L, Bulgariu L, Youcef S, Toumi K, Soudani N (2022) Characterizing and modeling of Oak fruit shells biochar as an adsorbent for the removal of Cu, Cd, and Zn in single and in competitive systems. Chem Eng Res Des 188:972–987. https://doi.org/10.1016/j.cherd.2022.10.009

    Article  CAS  Google Scholar 

  16. Wang B, Lan J, Bo Ch, Gong B, Ou J (2023) Adsorption of heavy metal onto biomass-derived activated carbon: review. RSC Adv 13(7):4275–4302. https://doi.org/10.1039/D2RA07911A

    Article  PubMed  PubMed Central  Google Scholar 

  17. Peng H, Gao P, Chu G, Pan B, Peng J, Xing B (2017) Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environ Pollut 229:846–853. https://doi.org/10.1016/j.envpol.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  18. Choi SS, Tae Ryeong ChoiTR, Choi HJ (2021) Surface Modification of Phosphoric Acid-activated Carbon in Spent Coffee Grounds to Enhance Cu(II) Adsorption from Aqueous Solutions. Appl Chem Eng 32(5) : 589–598. https://doi.org/10.14478/ace.2021.1074

  19. Reddy KSK, Al Shoaibi A, Srinivasakannan C (2012) A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits. New Carbon Mater 27(5):344–351. https://doi.org/10.1016/S1872-5805(12)60020-1

    Article  CAS  Google Scholar 

  20. Dechapanya W, Khamwichit A (2023) Biosorption of aqueous Pb(II) by H3PO4-activated biochar prepared from palm kernel shells (PKS). Heliyon 9(7):e17250. https://doi.org/10.1016/j.heliyon.2023.e17250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alhawtali S, El-Harbawi M, El Blidi L, Alrashed MM, Alzobidi A, Yin CY (2024) Date Palm Leaflet-Derived Carbon Microspheres Activated Using Phosphoric Acid for Efficient Lead (II) Adsorption. C 10(26). https://doi.org/10.3390/c10010026

  22. Girgis BS, El-Hendawy ANA (2002) Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Microporous Mesoporous Mater 52(2):105–117. https://doi.org/10.1016/s1387-1811(01)00481-4

    Article  CAS  Google Scholar 

  23. Alharbi HA, Hameed BH, Alotaibi KD, Aloud SS, Al-Modaihsh AS (2022) Mesoporous Activated carbon from Leaf Sheath Date Palm Fibers by Microwave-Assisted Phosphoric Acid Activation for efficient Dye Adsorption. ACS Omega 7(50):46079–46089. https://doi.org/10.1021/acsomega.2c03755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jibril B, Houache O, Al-Maamari R, Badir Al-Rashidi B (2008) Effects of H3PO4 and KOH in carbonization of lignocellulosic material. J Anal Appl Pyrolysis 83(2):151–156. https://doi.org/10.1016/j.jaap.2008.07.003

    Article  CAS  Google Scholar 

  25. Bouhamed F, Elouear Z, Bouzid J (2012) Adsorptive removal of copper (II) from aqueous solutions on activated carbon prepared from Tunisian date stones: Equilibrium, kinetics and thermodynamics. J Taiwan Inst Chem 43(5):741–749. https://doi.org/10.1016/j.jtice.2012.02.011

    Article  CAS  Google Scholar 

  26. Vunain E, Kenneth D, Biswick T (2017) Synthesis and characterization of low-cost activated carbon prepared from Malawian baobab fruit shells by H3PO4 activation for removal of Cu (II) ions: equilibrium and kinetics studies. Appl Water Sci 7:4301–4319. https://doi.org/10.1007/s13201-017-0573-x

    Article  CAS  Google Scholar 

  27. Bastidas-Oyanedel J-R, Fang C, Almardeai S, Javid U, Yousuf A, Schmidt JE (2016) Waste biorefinery in arid/semi-arid regions. Bioresour Technol 215:21–28. https://doi.org/10.1016/j.biortech.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  28. Rekis A (2021) Conservation des ressources phytogénétiques en Algérie : cas des palmiers dattiers cultivés et sub-spontanés (Phoenixdactylifera L.). Thèse de doctorat en science agronomique. Université Mohamed Khider Biskra. Algérie. http://thesis.univ-biskra.dz/5485/

  29. AL-Oqla FM, Alothman OY, Jawaid M, Sapuan S, Es-Saheb MH (2014) Processing and properties of date palm fibers and its composites. BiomassBioenergy: Process Prop 1–25.https://doi.org/10.1007/978-3-319-07641-6_1

  30. Al Arni S, Elwaheidi M, Converti A, Benaissa M, Salih AAM, Ghareba S (2022) Abbas N (2022) Application of Date Palm Surface Fiber as an Efficient Biosorbent for Wastewater Treatment. Chem Bio Eng Reviews 10(1):1–11. https://doi.org/10.1002/cben.202200008

    Article  CAS  Google Scholar 

  31. Shafiq M, Alazba AA, Amin MT (2018) Removal of heavy metals from wastewater using date palm as a biosorbent: a comparative review. Sains Malays 47(1):35–49. https://doi.org/10.17576/jsm-2018-4701-05

  32. Al-Ghamdi A, Altaher H, Omar W (2013) Application of date palm trunk fibers as adsorbents for removal of Cd+2 ions from aqueous solution. J Water Reuse Desalination 03(1):47–54. https://doi.org/10.2166/wrd.2013.031

  33. Amin MT, Alazba AA, Shafiq M (2016) Adsorption of copper (Cu2+) from aqueous solution using date palm trunk fibre: isotherms and kinetics. Desalination Water Treat 57(47):22454–22466. https://doi.org/10.1080/19443994.2015.1131635

    Article  CAS  Google Scholar 

  34. Hikmat NA, Qassim BB, Khethi MT (2014) Thermodynamic and kinetic studies of lead adsorption from aquesous solution onto petiole and fiber of palm tree. Am J Chem 4(4):116–124. https://doi.org/10.5923/j.chemistry.20140404.02

    Article  Google Scholar 

  35. Basheer AO, Hanafiah MM, Alsaadi MA, Al-Douri Y, Al-Raad AA (2021) Synthesis and optimization of high surface area mesoporous date palm fiber-based nanostructured powder activated carbon for aluminum removal. Chin J Chem Eng 32:472–484. https://doi.org/10.1016/j.cjche.2020.09.071

    Article  CAS  Google Scholar 

  36. Melliti A, Yılmaz M, Sillanpää M, Hamrouni B, Vurm R (2023) Low-cost date palm fiber activated carbon for effective and fast heavy metal adsorption from water: Characterization, equilibrium, and kinetics studies. Colloids Surf A Physicochem Eng Asp 672:131775. https://doi.org/10.1016/j.colsurfa.2023.131775

    Article  CAS  Google Scholar 

  37. Mohan D, Singh KP (2002) Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste. Water Res 36:2304–2318. https://doi.org/10.1016/s0043-1354(01)00447-x

    Article  CAS  PubMed  Google Scholar 

  38. Adibmehr M, Faghihian H (2018) Magnetization and functionalization of activated carbon prepared by oak shell biowaste for removal of Pb2+ from aqueous solutions. Chem Eng Commun 205:519–532. https://doi.org/10.1080/00986445.2017.1404461

    Article  CAS  Google Scholar 

  39. Puziy AM, Poddubnaya OI, Martínez-Alonso A, Castro-Muñiz A, Suárez-García F, Tascón JMD (2007) Oxygen and phosphorus enriched carbons from lignocellulosic material. Carbon 45:1941–1950. https://doi.org/10.1016/j.carbon.2007.06.014

    Article  CAS  Google Scholar 

  40. Martins AC, Pezoti O, Cazetta AL, Bedin KC, Yamazaki DAS, Bandoch GFG, Asefa T, Visentainer JV, Almeida VC (2015) Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chem Eng J 260:291–299. https://doi.org/10.1016/j.cej.2014.09.017

    Article  CAS  Google Scholar 

  41. Egbosiuba TC, Abdulkareem AS, Kovo AS, Afolabi EA, Tijani JO, Auta M, Roos WD (2020) Ultrasonic enhanced adsorption of methylene blue onto the optimized surface area of activated carbon: Adsorption isotherm, kinetics and thermodynamics. Chem Eng Res Des 15:315–336. https://doi.org/10.1016/j.cherd.2019.10.016

    Article  CAS  Google Scholar 

  42. Suganya S, Senthil Kumar PS (2018) Influence of ultrasonic waves on preparation of active carbon from coffee waste for the reclamation of effluents containing Cr(VI) ions. J IndEngChem 60:418–430. https://doi.org/10.1016/j.jiec.2017.11.029

    Article  CAS  Google Scholar 

  43. Hassan MR, Yakout SM, Abdeltawab AA, Aly MI (2021) Ultrasound facilitates and improves removal of triphenylmethane (crystal violet) dye from aqueous solution by activated charcoal: A kinetic study. J SaudiChem Soc 25(6):10123. https://doi.org/10.1016/j.jscs.2021.101231

    Article  CAS  Google Scholar 

  44. Gupta S, Sireesha S, Sreedhar I, Patel CM, Anitha KL (2020) Latest trends in heavy metal removal from wastewater by biochar based sorbents. J Water Process Eng 38:101561. https://doi.org/10.1016/j.jwpe.2020.101561

    Article  Google Scholar 

  45. Ho YS, Mckay G (1998) Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot 76(4):332–340. https://doi.org/10.1205/095758298529696

    Article  CAS  Google Scholar 

  46. Lagergren SK (1898) About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl 24:1–39

    Google Scholar 

  47. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. Sanit Eng Div, ASCE 89(2):31–60. https://doi.org/10.1061/jsedai.0000430

  48. Tran HN, You SJ, Hosseini BA, Chao HP (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res 120(1):88–116. https://doi.org/10.1016/j.watres.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  49. Uko CA, Tijani JO, Abdulkareem SA, Mustapha S, Egbosiuba TC, Muzenda E (2022) Adsorptive properties of MgO/WO3 nanoadsorbent for selected heavy metals removal from indigenous dyeing wastewater. Process Saf Environ Prot 162:775–794. https://doi.org/10.1016/j.psep.2022.04.057

    Article  CAS  Google Scholar 

  50. Abdulkareem AS, Hamzat WA, Tijani JO, Egbosiuba TCh, Mustapha S, Abubakre OK, Okafor BO, Babayemi AK (2023) Isotherm, kinetics, thermodynamics and mechanism of metal ions adsorption from electroplating wastewater using treated and functionalized carbon nanotubes. J Environ Chem Eng 11(1):109180. https://doi.org/10.1016/j.jece.2022.109180

    Article  CAS  Google Scholar 

  51. Cruz-Lopes L, Macena M, Esteves B, Santos-Vieira I (2022) Lignocellulosic Materials Used as Biosorbents for the Capture of Nickel (II) in Aqueous Solution. Appl Sci 12(2):933. https://doi.org/10.3390/app12020933

    Article  CAS  Google Scholar 

  52. Youcef S, Guergazi S, Youcef L (2022) Adsorption modeling of Cu and Zn in single and combined systems onto activated carbon of olive stone. Modeling Earth Sys Environ 8:3927–3940. https://doi.org/10.1007/s40808-021-01335-w

  53. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38(11):2221–2295. https://doi.org/10.1021/ja02268a002

    Article  CAS  Google Scholar 

  54. Freundlich HMF (1906) Über die Adsorption in Lösungen. Zeitschriftfür Physikalische Chemie 57(1):385–470. https://doi.org/10.1515/zpch-1907-5723

    Article  CAS  Google Scholar 

  55. Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63(6):1024. https://doi.org/10.1021/j150576a611

    Article  CAS  Google Scholar 

  56. Sips R J (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495.https://doi.org/10.1063/1.1746922

  57. Hilal NM, Ahmed IA, El-Sayed RE (2012) Activated and nonactivated date pits adsorbents for the removal of Copper (II) and Cadmium (II) from aqueous solutions. ISRN Phys Chem 985853.https://doi.org/10.5402/2012/985853

  58. Amin MT, Alazba AA, Shafiq M (2019) Application of biochar derived from date palm biomass for removal of lead and copper ions in a batch reactor: kinetics and isotherm scrutiny. Chem Phys Lett 722:64–73. https://doi.org/10.1016/j.cplett.2019.02.018

    Article  CAS  Google Scholar 

  59. Aldawsari A, Khan MA, Hameed BH, Alqadami AA, Siddiqui MR, Alothman ZA, Hadj Ahmed AYB (2017) Mercerized mesoporous date pit activated carbon-A novel adsorbent to sequester potentially toxic divalent heavy metals from water. PLoS ONE 12(9):e0184493. https://doi.org/10.1371/journal.pone.0184493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Saravanan AM, Al Hashmi RA, Jesil A, Achuthan M, Walke S, Al Rashdi S, Al Balushi N, Jahan S (2022) Experimental scrutinization on the treatment of synthetic wastewater using neem bark and date palm fiber as an adsorbent. Rasayan J Chem Special Issue 204–215. https://doi.org/10.31788/RJC.2022.1558134

  61. Günay A, Ersoy B, Dikmen S, Evcin A (2013) Investigation of equilibrium, kinetic, thermodynamic and mechanism of Basic Blue 16 adsorption by montmorillonitic clay. Adsorption 19:757–768. https://doi.org/10.1007/s10450-013-9509-4

    Article  CAS  Google Scholar 

  62. Amer MW, Awwad AM (2017) Removal of Zn(II), Cd(II) and Cu(II) Ions from Aqueous Solution by Nano-Structured Kaolinite. Asian J Chem 29(5):965–969. https://doi.org/10.14233/ajchem.2017.20343

  63. Biggar JW, Cheung MW (1973) Adsorption of picloram (4-amino-3,5,6 trichloropicolinic acid) on panoche, ephrata, and palouse soils: a thermodynamic approach to the adsorption mechanism1. SoilSci Soc Am J 37(6):863–868. https://doi.org/10.2136/sssaj1973.03615995003700060022x

    Article  CAS  Google Scholar 

  64. Canzano S, Pasquale I, Stefano S, Sante C (2012) Comment on “Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design.” Water Res 46(13):4314–4315. https://doi.org/10.1016/j.watres.2012.05.040

    Article  CAS  PubMed  Google Scholar 

  65. Humelnicu D, Ignat M, Doroftei F (2015) Agricultural by-products as low-cost sorbents for the removal of heavy metals from dilute wastewaters. Environ Monit Assess 187:1–11. https://doi.org/10.1007/s10661-015-4454-1

    Article  CAS  Google Scholar 

  66. Zahaf F, Marouf R, Ouadjenia F, Schott J (2018) Kinetic and thermodynamic studies of the adsorption of Pb (II), Cr (III) and Cu (II) onto modified bentonite. Desal Water Treat 131:282–290.https://doi.org/10.5004/dwt.2018.23060

  67. Cantu Y, Remes A, Reyna A, Martinez D, Villarreal J, Ramos H, Trevino S, Tamez C, Martinez A, Eubanks T, Parsons JG (2014) Thermodynamics, Kinetics, and Activation energy Studies of the sorption of chromium(III) and chromium(VI) to a Mn3O4 nanomaterial. Chem Eng J 254:374–383. https://doi.org/10.1016/j.cej.2014.05.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pelalak R, Heidari Z, Khatami SM, Kurniawan TA, Marjani A, Shirazian S (2021) Oak wood ash/GO/Fe3O4 adsorption efficiencies for cadmium and lead removal from aqueous solution: Kinetics, equilibrium and thermodynamic evaluation. Arab J Chem 14(3):102991. https://doi.org/10.1016/j.arabjc.2021.102991

    Article  CAS  Google Scholar 

  69. Loganathan P, Shim WG, Sounthararajah DP, Kalaruban MNur T, Vigneswaran S (2018) Modelling equilibrium adsorption of single, binary, and ternary combinations of Cu, Pb, and Zn onto granular activated carbon. Environ Sci Pollut Res 25:6664–6675(2018). https://doi.org/10.1007/s11356-018-1793-9

Download references

Acknowledgements

This study was performed at the LARHYSS Laboratory- University Mohamed Khider, Biskra-Algeria, and supported by the DGRSDT of the Ministry of Higher Education and Scientific Research-Algeria.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amina Soudani or Leila Youcef.

Ethics declarations

Competing Interest

Authors have no competing interests to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soudani, A., Youcef, L., Youcef, S. et al. High Performance Activated Carbon Based on Date Palm Fibers for Cu2+ Removal in Water. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00974-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00974-7

Keywords

Navigation