Skip to main content
Log in

A concise review of Dahlia spp., modern and powerful techniques for anthocyanins detection

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In the last few years, the food industry has focused on the search for potential sources of anthocyanins that are able to provide color to replace synthetic dyes and at the same time provide health benefits through food products. Dahlia spp. flower has the potential for being source of anthocyanins. The dahlia is a native, annual flower from Mexico with a wide diversity of shapes and colors. The ancestral use of the flower in several dishes, its abundance, and the intense color of the flowers make the Dahlia spp. flower a suitable candidate to be considered as a potential source of anthocyanins. In this review, a variety of purification and detection methods of anthocyanins are presented, with special emphasis on the anthocyanin composition in Dahlia flowers. The anthocyanin fingerprint of a variety of Dahlia species are detected by liquid chromatography techniques such as HPLC–DAD, HPLC–MS and UPLC-Ms/Ms and FT-ICR-MS. New insights on anthocyanic profile have shown that in some cases uncommon anthocyanins are detected in some red and black Dahlia flowers; like pelargonidin3-sambubioside-5-glucoside and peonidin-3- sambubioside-5-glucoside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ramesh M, Muthuraman A (2018) Flavoring and Coloring Agents: Health Risks and Potential Problems. In: Natural and Artificial Flavoring Agents and Food Dyes. Elsevier, pp 1–28

  2. Diaconeasa Z, Știrbu I, Xiao J, Leopold N, Ayvaz Z, Danciu C, Ayvaz H, Stǎnilǎ A, Nistor M, Socaciu C (2020) Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention. Biomedicines 8:336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wallace G (2019) Anthocyanins—Nature’s Bold, Beautiful, and Health-Promoting Colors. Foods 8:550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Granados-Balbuena SY, Santacruz-Juárez E, Canseco-González D, Aztatzi-Rugerio L, Sánchez-Minutti L, Ramírez-López C, Ocaranza-Sánchez E (2022) Identification of anthocyanic profile and determination of antioxidant activity of Dahlia pinnata petals: A potential source of anthocyanins. J Food Sci 87:957–967

    Article  CAS  PubMed  Google Scholar 

  5. Hogg R (2006) The Dahlia: Its History and Cultivation. Groombidge and Sons, 1853

  6. Morales-Guillaumin E (2011) Dahlia, la flor de México. Cienc Desarro

  7. Ovando M, Boettler B (2006) La Dahlia una belleza originaria de México. Rev Dig Univ UNAM 7:2–11

    Google Scholar 

  8. INECOL (2017) Ciencia Hoy. In: 50 Aniversario de la Dalia como la Flor Nacional de México. September 2023. http://www.inecol.mx/inecol/index.php/es/2017-06-26-16-35-48/17-ciencia-hoy/244-50-aniversario-de-la-dalia-como-la-flor-nacional-de-mexico.

  9. Singh AK (2006) Flower Crops: Cultivation and Management. New India Publishing Agency

  10. Bye R, Linares E (2008) La Dalia, flor nacional de México. Biodiversitas 76:13–15

    Google Scholar 

  11. Lara-Cortés E, Martín-Belloso O, Osorio-Díaz P, Barrera-Necha LL, Sánchez-López JA, Bautista-Baños S (2014) Antioxidant capacity, nutritional and functional composition of edible dahlia flowers. Rev Chapingo Ser Hortic 20:101–116

    Article  Google Scholar 

  12. Akeroyd S, Allaway Z, Caldon H, Cox M, Hendy J (2011) The complete Gardener’s Guide. DK

  13. Mulík S, Ozuna C (2020) Mexican edible flowers: Cultural background, traditional culinary uses, and potential health benefits. Int J Gastron Food Sci 21:100235

    Article  Google Scholar 

  14. Costa PA, Souza DC, Ossani PC, Mendes MH, Silva ML, Carvalho EE, Resende LV.(2022) Nutritional and functional compounds in dahlia flowers and roots. Braz J Food Technol https://doi.org/10.1590/1981-6723.02922

  15. Mejía-Muñoz JM, De Luna-García I, Jiménez-Ruiz EF, Sosa-Montes E, Flores-Espinosa C, Treviño-De Castro G, Reyes-Santiago J (2020) Research on dahlia, the national flower of Mexico. Acta Hortic 103–108

  16. Pires TCSP, Dias MI, Barros L, Ferreira ICFR (2017) Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chem 220:337–343

    Article  CAS  PubMed  Google Scholar 

  17. Sigurdson GT, Tang P, Giusti MM (2017) Natural Colorants: Food Colorants from Natural Sources. Annu Rev Food Sci Technol 8:261–280

    Article  CAS  PubMed  Google Scholar 

  18. Lu Y, Foo LY (2001) Unusual anthocyanin reaction with acetone leading to pyranoanthocyanin formation. Tetrahedron Lett 42:1371–1373

    Article  CAS  Google Scholar 

  19. Rodriguez-Saona LE, Wrolstad RE (2001) Extraction, Isolation, and Purification of Anthocyanins. Curr Protoc Food Anal Chem https://doi.org/10.1002/0471142913.faf0101s00

  20. Tan J, Han Y, Han B, Qi X, Cai X, Ge S, Xue H (2022) Extraction and purification of anthocyanins: A review. J Agric Food Res 8:100306

    CAS  Google Scholar 

  21. Žuvela P, Skoczylas M, Jay Liu J, T, Ba̧czek, R, Kaliszan, MW, Wong, B, Buszewski (2019) Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chem Rev 119:3674–3729

  22. Abdu Hussen A (2022) High-Performance Liquid Chromatography (HPLC): A review. Ann Adv Chem 6:010–020

    Article  Google Scholar 

  23. Vasconcelos Soares Maciel E, de Toffoli AL, Sobieski E, Domingues Nazário CE, Lanças FM (2020) Miniaturized liquid chromatography focusing on analytical columns and mass spectrometry: A review. Anal Chim Acta 1103:11–31

    Article  CAS  PubMed  Google Scholar 

  24. Srivastava N, Singh A, Kumari P, Nishad JH, Gautam VS, Yadav M, Bharti R, Kumar D, Kharwar RN (2021) Advances in extraction technologies: isolation and purification of bioactive compounds from biological materials. In: Natural Bioactive Compounds. Elsevier, pp 409–433

  25. Soylak M, Elci L, Dogan M (2001) Solid phase extraction of trace metal ions with amberlite XAD resins prior to atomic absorption spectrometric analysis. J Trace Microprobe Tech 19:329–344

    Article  CAS  Google Scholar 

  26. Moustafa N, El-Desouki D (2009) Inverse gas chromatographic characterization of Porapak Q as an extractant of pollutants from aqueous media. Chem Pap. https://doi.org/10.2478/s11696-009-0014-x

    Article  Google Scholar 

  27. Kenichi Sekimoto M, Noriaki Oshima E, Takahashi Y, Seita T (1993) Polyacyclic polyacrylic acid ester derivatives

  28. Sigma-Aldrich Amberlite XAD polymeric resins. 1–3

  29. dos Santos FKF, de Rezende CM, da Veiga Júnior VF (2022) Macroporous polymeric resins as a tool to obtain bioactive compounds in food and food-waste: A review. J Food Compos Anal 114:104703

    Article  Google Scholar 

  30. Tomás-Barberán FA, Blázquez MA, Garcia-Viguera C, Ferreres F, Tomás-Lorente F (1992) A comparative study of different amberlite XAD resins in flavonoid analysis. Phytochem Anal 3:178–181

    Article  Google Scholar 

  31. Heinonen J, Farahmandazad H, Vuorinen A, Kallio H, Yang B, Sainio T (2016) Extraction and purification of anthocyanins from purple-fleshed potato. Food Bioprod Process 99:136–146

    Article  CAS  Google Scholar 

  32. Chen Y, Du F, Wang W et al (2017) Large-scale isolation of high-purity anthocyanin monomers from mulberry fruits by combined chromatographic techniques. J Sep Sci 40:3506–3512

    Article  CAS  PubMed  Google Scholar 

  33. (2023) Separation process characteristics of phenolic compounds from organic purple-fleshed sweet potatoes ( Ipomoea batatas L) leaves using macroporous resins. J Food Process Eng 46(8):e14365. https://doi.org/10.1111/jfpe.14365

  34. Mohammad SS, da Rocha RN, Barbosa MIMJ, Junior JLB (2023) Useful separation and purification of anthocyanin compounds from grape skin pomace Alicante Bouschet using macroporous resins. J Iran Chem Soc 20:875–883

    Article  CAS  Google Scholar 

  35. Zhao X, Zhang S-S, Zhang X-K, He F, Duan C-Q (2020) An effective method for the semi-preparative isolation of high-purity anthocyanin monomers from grape pomace. Food Chem 310:125830

    Article  CAS  PubMed  Google Scholar 

  36. Escher GB, Wen M, Zhang L, Rosso ND, Granato D (2020) Phenolic composition by UHPLC-Q-TOF-MS/MS and stability of anthocyanins from Clitoria ternatea L. (butterfly pea) blue petals. Food Chem 331:127341

    Article  CAS  PubMed  Google Scholar 

  37. Müller-Maatsch J, Gurtner K, Carle R, Björn Steingass C (2019) Investigation into the removal of glucosinolates and volatiles from anthocyanin-rich extracts of red cabbage. Food Chem 278:406–414

    Article  PubMed  Google Scholar 

  38. Chen Y, Zhang W, Zhao T et al (2016) Adsorption properties of macroporous adsorbent resins for separation of anthocyanins from mulberry. Food Chem 194:712–722

    Article  CAS  PubMed  Google Scholar 

  39. Stella C, Rudaz S, Veuthey J-L, Tchapla A (2001) Silica and other materials as supports in liquid chromatography. Chromatographic tests and their importance for evaluating these supports Part I. Chromatographia 53:S113–S131

    Article  CAS  Google Scholar 

  40. Teng H, Mi Y, Cao H, Chen L (2022) Enzymatic acylation of raspberry anthocyanin: Evaluations on its stability and oxidative stress prevention. Food Chem 372:130766

    Article  CAS  PubMed  Google Scholar 

  41. Rollando R, Kurniawan CD, Nurdiani R, Timur SYW, Moza PG (2019) Simple and rapid method for isolating anthocyanin from wild mulberry (Morus nigra L.). J Pharm Sci Commun 16:14–19

    Article  Google Scholar 

  42. Etika SB, Iryani I (2019) Isolation and Characterization of Flavonoids from Black Glutinous Rice (Oryza Sativa L. Var Glutinosa). Eksakta Berk Ilm Bid MIPA 20:6–16

    Article  Google Scholar 

  43. Kalász H, Báthori M, Valkó KL (2020) Basis and pharmaceutical applications of thin-layer chromatography. pp 523–585

  44. Regenstein JM, Regenstein CE (1984) Column Chromatography. In: Food Protein Chemistry. Elsevier, pp 144–167

  45. Barrientos-Ramírez L, Ramírez-Salcedo HE, Fernández-Aulis MF, Ruíz-López MA, Navaro-Ocaña A, Vargas-Radillo JJ (2018) Anthocyanins from rose maiz (Zea mays L) grains. Interciencia 43:188–192

    Google Scholar 

  46. Myjavcová R, Marhol P, Křen V, Šimánek V, Ulrichová J, Palíková I, Papoušková B, Lemr K, Bednář P (2010) Analysis of anthocyanin pigments in Lonicera (Caerulea) extracts using chromatographic fractionation followed by microcolumn liquid chromatography-mass spectrometry. J Chromatogr A 1217:7932–7941

    Article  PubMed  Google Scholar 

  47. Wang E, Yin Y, Xu C, Liu J (2014) Isolation of high-purity anthocyanin mixtures and monomers from blueberries using combined chromatographic techniques. J Chromatogr A 1327:39–48

    Article  CAS  PubMed  Google Scholar 

  48. Weber F, Greve K, Durner D, Fischer U, Winterhalter P (2013) Sensory and Chemical Characterization of Phenolic Polymers from Red Wine Obtained by Gel Permeation Chromatography. Am J Enol Vitic 64:15–25

    Article  CAS  Google Scholar 

  49. Bunea A, Rugină D, Sconţa Z, Pop RM, Pintea A, Socaciu C, Tăbăran F, Grootaert C, Struijs K, VanCamp J (2013) Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and apoptotic properties in B16–F10 metastatic murine melanoma cells. Phytochemistry 95:436–444

    Article  CAS  PubMed  Google Scholar 

  50. Cuevas-Rodríguez EO, Yousef GG, García-Saucedo PA, López-Medina J, Paredes-López O, Lila MA (2010) Characterization of Anthocyanins and Proanthocyanidins in Wild and Domesticated Mexican Blackberries (Rubus spp.). J Agric Food Chem 58:7458–7464

    Article  PubMed  Google Scholar 

  51. Byamukama R, Jordheim M, Kiremire B, Namukobe J, Andersen ØM (2006) Anthocyanins from flowers of Hippeastrum cultivars. Sci Hortic 109:262–266

    Article  CAS  Google Scholar 

  52. Zhang Z, Xuequn P, Yang C, Ji Z, Jiang Y (2004) Purification and structural analysis of anthocyanins from litchi pericarp. Food Chem 84:601–604

    Article  CAS  Google Scholar 

  53. Março PH, Poppi RJ, Scarminio IS (2008) Procedimentos analíticos para identificação de antocianinas presentes em extratos naturais. Quim Nova 31:1218–1223

    Article  Google Scholar 

  54. Kong J-M, Chia L-S, Goh N-K, Chia T-F, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923–933

    Article  CAS  PubMed  Google Scholar 

  55. Seger C, Sturm S, Stuppner H (2013) Mass spectrometry and NMR spectroscopy: modern high-end detectors for high resolution separation techniques – state of the art in natural product HPLC-MS, HPLC-NMR, and CE-MS hyphenations. Nat Prod Rep 30:970

    Article  CAS  PubMed  Google Scholar 

  56. Vogeser M, Seger C (2008) A decade of HPLC–MS/MS in the routine clinical laboratory — Goals for further developments. Clin Biochem 41:649–662

    Article  CAS  PubMed  Google Scholar 

  57. León-Roque N, Romero Guzmán BM, Oblitas J, Hidalgo-Chávez DW (2023) Identification of flavonoids by HPLC-MS in fruit waste of Latin America: A systematic review. Sci Agropecu 14:153–162

    Article  Google Scholar 

  58. Deineka VI, Oleinits EYu, Kulchenko YYu, Blinova IP, Deineka LA (2021) Chromatographic Separation and Determination of Anthocyanins under Conditions of Reversed Phase Chromatography, When Used As Mobile Phases of Acetonitrile-Formic Acid/Phosphoric Acid-Water Systems. Russ J Phys Chem 95:1729–1734

    Article  CAS  Google Scholar 

  59. Deineka VI, Oleinits EY, YY, Kul’chenko, IP, Blinova, LA, Deineka (2020) Control of the Selectivity of Separation and the Determination of Anthocyanins of Fruits of Vaccinium Family Plants Using Acetonitrile-Formic Acid–Water Eluents. J Anal Chem 75:1443–1450

  60. Deineka VI, Oleinits EYu, Blinova IP, Deineka LA (2021) Selectivity Control of the Separation of Anthocyanins: Replacing Acetonitrile for Methanol in the Mobile Phase. J Analy Chem 76:939–945

  61. Liu P, Li W, Hu Z, Qin X, Liu G (2020) Isolation, purification, identification, and stability of anthocyanins from Lycium ruthenicum Murr. LWT 126:109334

    Article  CAS  Google Scholar 

  62. Meng L, Zhu J, Ma Y, Sun X, Li D, Li L, Bai H, Xin G, Meng X (2019) Composition and antioxidant activity of anthocyanins from Aronia melanocarpa cultivated in Haicheng, Liaoning China. Food Biosci 30:100413

    Article  CAS  Google Scholar 

  63. Fernandez-Aulis F, Hernandez-Vazquez L, Aguilar-Osorio G, Arrieta-Baez D, Navarro-Ocana A (2019) Extraction and Identification of Anthocyanins in Corn Cob and Corn Husk from Cacahuacintle Maize. J Food Sci 84:954–962

    Article  CAS  PubMed  Google Scholar 

  64. Jiang W, Zhou X (2019) Hydrolysis of radish anthocyanins to enhance the antioxidant and antiproliferative capacities. Food Chem 294:477–485

    Article  CAS  PubMed  Google Scholar 

  65. Zhang P, Li Y, Chong S, Yan S, Yu R, Chen R, Si J, Zhang X (2022) Identification and quantitative analysis of anthocyanins composition and their stability from different strains of Hibiscus syriacus L. flowers. Ind Crops Prod 177:114457

    Article  CAS  Google Scholar 

  66. Rathod RH, Chaudhari SR, Patil AS, Shirkhedkar AA (2019) Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) in practice: analysis of drugs and pharmaceutical formulations. Futur J Pharm Sci 5:6

    Article  Google Scholar 

  67. Durai Ananda Kumar T, Charan S, Venkateswarlu A, Supriya Reddy K (2020) Evolution of liquid chromatography: Technologies and applications. Int J Res Pharm Sci 11:3204–3211

    Article  Google Scholar 

  68. Deng C, Li S, Feng C, Hong Y, Huang H, Wang J, Wang L, Dai S (2019) Metabolite and gene expression analysis reveal the molecular mechanism for petal colour variation in six Centaurea cyanus cultivars. Plant Physiol Biochem 142:22–33

    Article  CAS  PubMed  Google Scholar 

  69. Huang D, Ming R, Yao S, Li L, Huang R, Tan Y (2021) Identification of anthocyanins in the fruits of Kadsura coccinea using UPLC-MS/MS-based metabolomics. Biochem Syst Ecol 98:104324

    Article  CAS  Google Scholar 

  70. Beg S, Rahman M (2021) Analytical quality by design for liquid chromatographic method development. In: Handbook of Analytical Quality by Design. Elsevier, pp 87–97

  71. Hu M, Du J, Du L, Luo Q, Xiong J (2020) Anti-fatigue activity of purified anthocyanins prepared from purple passion fruit (P. edulis Sim) epicarp in mice. J Funct Foods 65:103725

    Article  CAS  Google Scholar 

  72. Senes CER, Nicácio AE, Rodrigues CA, Manin LP, Maldaner L, Visentainer JV (2020) Evaluation of Dispersive Solid-Phase Extraction (d-SPE) as a Clean-up Step for Phenolic Compound Determination of Myrciaria cauliflora Peel. Food Anal Methods 13:155–165

    Article  Google Scholar 

  73. Shen D, Yuan X, Zhao Z, Wu S, Liao L, Tang F, Bi L, Liu Y (2021) Determination of Phenolic Compounds in Walnut Kernel and Its Pellicle by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Anal Methods 14:2408–2419

    Article  Google Scholar 

  74. Wen S, Bai S, An R, et al (2023) Effect of Pile-Fermentation on the Taste Quality of Dark Tea from a Single Large-Leaf Tea Variety by Uhplc-Ms/Ms and Electronic Tongue. SSRN 1–33

  75. Tsybin YO, Nagornov KO, Kozhinov AN (2019) Advanced fundamentals in Fourier transform mass spectrometry. In: Fundamentals and Applications of Fourier Transform Mass Spectrometry. Elsevier, pp 113–132

  76. Gosset-Erard C, Aubriet F, Leize-Wagner E, François Y-N, Chaimbault P (2023) Hyphenation of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with separation methods: The art of compromises and the possible-A review. Talanta 257:124324

    Article  CAS  PubMed  Google Scholar 

  77. Fukui Y, Nomoto K, Iwashita T, Masuda K, Tanaka Y, Kusumi T (2006) Two novel blue pigments with ellagitannin moiety, rosacyanins A1 and A2, isolated from the petals of Rosa hybrida. Tetrahedron 62:9661–9670

    Article  CAS  Google Scholar 

  78. Barrow MP, Burkitt WI, Derrick PJ (2005) Principles of Fourier transform ion cyclotron resonance mass spectrometry and its application in structural biology. Analyst 130:18

    Article  CAS  PubMed  Google Scholar 

  79. Qi Y, Xie Q, Wang J-J et al (2022) Deciphering dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS): from bulk to fractions and individuals. Carbon Res 1:3

    Article  Google Scholar 

  80. Liu Y, Pan Y (2009) Application of FT-ICR MS for the Study of Protein Complexes. Appl Spectrosc Rev 44:231–244

    Article  Google Scholar 

  81. Thompson AM, Stratton KG, Bramer LM, Zavoshy NS, McCue LA (2021) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) peak intensity normalization for complex mixture analyses. Rapid Commun Mass Spectrom. https://doi.org/10.1002/rcm.9068

    Article  PubMed  Google Scholar 

  82. Zhang J, McCombie G, Guenat C, Knochenmuss R (2005) FT-ICR mass spectrometry in the drug discovery process. Drug Discov Today 10:635–642

    Article  CAS  PubMed  Google Scholar 

  83. Zhang X, Han J, Zhang X, Shen J, Chen Z, Chu W, Kang J, Zhao S, Zhou Y (2020) Application of Fourier transform ion cyclotron resonance mass spectrometry to characterize natural organic matter. Chemosphere 260:127458

    Article  CAS  PubMed  Google Scholar 

  84. Granados-Balbuena SY, Díaz-Pacheco A, García-Meza MG, Tapia-López L, Cruz-Narváez Y, Ocaranza-Sánchez E (2023) Phytochemical profile of petals from black Dahlia pinnata by flow injection analysis–electrospray ionization–Fourier transform ion cyclotron resonance mass spectrometry. Phytochem Anal. https://doi.org/10.1002/pca.3268

    Article  PubMed  Google Scholar 

  85. Zhao J, Guo M, Martins P, Ramos J, Li L, Sun B (2023) Effect of fermentation technologies on the structural composition of polymeric polyphenols in aged red wines. J Food Compos Anal 125:105782

    Article  Google Scholar 

  86. Xiao T, Luo Z, Guo Z, Wang X, Ding M, Wang W, Shen X, Zhao Y (2021) Multiple Roles of Black Raspberry Anthocyanins Protecting against Alcoholic Liver Disease. Molecules 26:2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xiao T, Guo Z, Sun B, Zhao Y (2017) Identification of Anthocyanins from Four Kinds of Berries and Their Inhibition Activity to α-Glycosidase and Protein Tyrosine Phosphatase 1B by HPLC–FT-ICR MS/MS. J Agric Food Chem 65:6211–6221

    Article  CAS  PubMed  Google Scholar 

  88. Nankar AN, Dungan B, Paz N, Sudasinghe N, Schaub T, Holguin FO, Pratt RC (2016) Quantitative and qualitative evaluation of kernel anthocyanins from southwestern United States blue corn. J Sci Food Agric 96:4542–4552

    Article  CAS  PubMed  Google Scholar 

  89. Halbwirth H, Muster G, Stich K (2008) Unraveling the Biochemical Base of Dahlia Flower Coloration. Nat Prod Commun 3:1934578X0800300

  90. Brunning A (2012) Dahlia colour chemistry: Why don’t we see blue dahlias? November 2023. https://www.compoundchem.com/2021/09/12/dahlia/.

  91. Pires TCSP, Dias MI, Barros L, Barreira JCM, Santos-Buelga C, Ferreira ICFR (2018) Incorporation of natural colorants obtained from edible flowers in yogurts. LWT Food Sci Technol 97:668–675

    Article  CAS  Google Scholar 

  92. Deguchi A, Tatsuzawa F, Hosokawa M, Doi M, Ohno S (2016) Quantitative Evaluation of the Contribution of Four Major Anthocyanins to Black Flower Coloring of Dahlia Petals. Hort J 85:340–350

    Article  CAS  Google Scholar 

  93. Granados-Balbuena SY, Chicatto-Gasperín V, Aztatzi-Rugerio L, Santacruz-Juárez E, Robles-de-la Torre RR, Ocaranza-Sánchez E, Robles-López MR (2022) Comparative study of anthocyanin extraction methods in Dahlia pinnata petals. J Appl Bot Food Qual 95:1–5

    CAS  Google Scholar 

  94. Ahmad S, Chen J, Chen G, Huang J, Zhou Y, Zhao K, Lan S, Liu Z, Peng D (2022) Why Black Flowers? An Extreme Environment and Molecular Perspective of Black Color Accumulation in the Ornamental and Food Crops. Front Plant Sci 13:885176. https://doi.org/10.3389/fpls.2022.885176

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Sulem Yali Granados-Balbuena would like to acknowledge the postdoctoral fellowship provided by CONAHCyT (Mexico) (702491).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sulem Yali Granados-Balbuena or Daniel Canseco-González.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granados-Balbuena, S.Y., Gómez-Montaño, F.J., Pacheco, A.D. et al. A concise review of Dahlia spp., modern and powerful techniques for anthocyanins detection. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00972-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00972-9

Keywords

Navigation