Skip to main content
Log in

Chemical Composition, Antibacterial and Cytotoxic Activities of Volatile Fraction and Water Extracts of Moricandia arvensis L. (DC) and Molecular Docking Study

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This study is aimed to investigate the chemical composition, antibacterial, and cytotoxic effects of the extracts obtained from the aerial parts of Moricandia arvensis L. (DC) in addition to water-based ones, specifically of decoction and infusion. Moreover, the volatile fraction is extracted through hydro-distillation, employing a Clevenger-type apparatus. A GC–MS analysis of the volatile fraction content of M. arvensis L. (DC) leads to the identification of 36 components, which represent 70.77% of the volatile fraction, including 3,9-epoxy-p-menth-1-ene (11.72%), vianol (10.41%), and myristicin (5.59%). All the extracts exhibit an antibacterial activity after testing five bacteria. The compounds vianol and 3,9-epoxy-p-menth-1-ene are found to inhibit Pseudomona aeruginosa, which is considered as one of the most resistant bacteria. This result is supported by significant binding interactions revealed by in silico docking studies. Added to that, the effect of the M. arvensis L. (DC) extracts on the viability of the Human Embryonic Kidney HEK-293 cells is studied. The results did not show any indication of cytotoxic impact. Consequently, it is concluded that this plant possesses a high potential in the fields of aromatherapy and pharmacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code Availability

Software application.

References

  1. Hu J, Zhu H, Feng Y, Yu M, Xu Y, Zhao Y, Zheng B, Lin J, Miao W, Zhou R, Cullen PJ (2023) Emulsions containing composite (clove, oregano, and cinnamon) essential oils: Phase inversion preparation, physicochemical properties and antibacterial mechanism. F Chem 421:136201. https://doi.org/10.1016/j.foodchem.2023.136201

    Article  CAS  Google Scholar 

  2. Lal M, Borah A, Pandey SK (2019) Identification of a new high essential oil yielding variety “Jor Lab AC-1”of Acorus calamus L. J Essent Oil Bear Pl 22:695–703. https://doi.org/10.1080/0972060X.2019.1653797

    Article  CAS  Google Scholar 

  3. Amal D, Fadia BT, Khadijah AAL, Najla H, Abdel Karim M, Zahra A, Ridha M, Chédia J (2022) Control of Staphylococcus aureus methicillin resistant isolated from auricular infections using aqueous and methanolic extracts of Ephedra alata. S J Bio Sc 29:1021–1028. https://doi.org/10.1016/j.sjbs.2021.09.071

    Article  CAS  Google Scholar 

  4. Ruonan Y, Chung SY, Xin Zh (2021) Maintain host health with time-restricted eating and phytochemicals : a review based on gut microbiome and circadian rhythm. T F Sc Techno 108:258–268. https://doi.org/10.1016/j.tifs.2021.01.007

    Article  CAS  Google Scholar 

  5. Salehi B, Sharopov F, Martorell M, Rajkovic J, Ademiluyi AO, Sharifi-Rad M, Sharifi-Rad J (2018) Phytochemicals in Helicobacter pylori infections: what are we doing now? Int J Mol Sci 19:2361. https://doi.org/10.3390/ijms19082361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shubham S, Lal RK, Singh VR, Rout PK, Padalia RC, Anju KY, Laldingngheti B, Divya B, Anil KM, Pal A, Bawankule DU, Anand M, Gupta P, Chanotiya CS (2022) Chemical investigation and biological activities of Patchouli (Pogostemon cablin (Blanco) Benth essential oil. In Gorps Prod 188:115504. https://doi.org/10.1016/j.indcrop.2022.115504

    Article  CAS  Google Scholar 

  7. Naroa A, Rosa MG, Maria PP (2021) Risks associated with the use of garcinia as a nutritional complement to lose weight. Nutrients 13:450. https://doi.org/10.3390/nu13020450

    Article  CAS  Google Scholar 

  8. Pratima R, Rama KN, Surinder KB, Moorthy PP (2023) Clinical and molecular attributes and evaluation of pancreatic cystic neoplasm. Bio Bioph Acta BBA -Rev Cancer 1878:188851. https://doi.org/10.1016/j.bbcan.2022.188851

    Article  CAS  Google Scholar 

  9. Qiao Zh, Yaya B, Wenxiao W, Jiajia L, Li Zh, Yuping T, Shijun Y (2023) Role of herbal medicine and gut microbiota in the prevention and treatment of obesity. J Eth 305:116127. https://doi.org/10.1016/j.jep.2022.116127

    Article  CAS  Google Scholar 

  10. Gogoi R, Begum T, Sarma N, Pandey SK, Lal M (2021) Chemical composition of Callistemon citrinus (Curtis) Skeels aerial part essential oil and its pharmacological applications, neurodegenerative inhibitory and genotoxic efficiencies. J Food Biochem 45:1–12. https://doi.org/10.1111/jfbc.13767

    Article  CAS  Google Scholar 

  11. Hajer L, Mariem BJ, Sonia T, Nour K, Saber Kh, Selim J, Giovanni DR, Kamel M (2020) Variation in chemical profile of leaves essential oils from thirteen Tunisian Eucalyptus species and evaluation of their antioxidant and antibacterial properties. Ind Crops Prod 158:112964. https://doi.org/10.1016/j.indcrop.2020.112964

    Article  CAS  Google Scholar 

  12. Fahmy SA, Sedky NK, Ramzy A, Abdelhady MM, Alabrahim OA, Shamma SN, Azzazy HM (2023) Green extraction of essential oils from Pistacia lentiscus resins: encapsulation into Niosomes showed improved preferential cytotoxic and apoptotic effects against breast and ovarian cancer cells. J Drug Del Sc Tech 87:104820. https://doi.org/10.1016/j.jddst.2023.104820

    Article  CAS  Google Scholar 

  13. Loying R, Gogoi R, Lal M (2021) Chemical composition, biological activities and cytotoxic effects of volatile oils extracted from leaves and rhizomes of Etlingera elatior (Jack) R.M. Sm. as a potential plant for industrial value. J Envir Bio 42:544–551. https://doi.org/10.22438/jeb/42/2(SI)/SI-284

    Article  CAS  Google Scholar 

  14. Mahanta BP, Sut D, Lal M, Haldar S (2021) Hydrodistillation alters the compositional originality in black turmeric (Curcuma caesia Roxb.) essential oil. J Essent Oil Res 33:240–246. https://doi.org/10.1080/10412905.2021.1873868

    Article  CAS  Google Scholar 

  15. Ugolini L, Scarafile D, Matteo R, Pagnotta E, Malaguti L, Lazzeri L, Modesto M, Checcucci A, Mattarelli P, Braschi I (2021) Effect of bioactive compounds released from Brassicaceae defatted seed meals on bacterial load in pig manure. Env Sci P Res 28:62353–62367. https://doi.org/10.1007/s11356-021-14321-7

    Article  CAS  Google Scholar 

  16. Ines S, Ines B, Ilef L, Jihed B, Wissem B, Aicha N, Mohamed BS, Soumaya K, Kamel Gh, Leila Ghedira C (2009) Moricandia arvensis extracts protect against dna damage, mutagenesis in bacteria system and scavenge the superoxide anion. Toxicol Vitr 23:166–175. https://doi.org/10.1016/j.tiv.2008.10.010

    Article  CAS  Google Scholar 

  17. Fumi T, Shun I, Motoki S, Hiroki M, Kazuhisa K, Yoshihito T, Satoshi O (2013) A tetra-acylated cyanidin 3-sophoroside-5-glucoside from the purple-violet flowers of Moricandia arvensis (L.) DC (Brassicaceae). Phy L 6:170–173. https://doi.org/10.1016/j.phytol.2012.12.007

    Article  CAS  Google Scholar 

  18. Ines S, Mohamed BS, Aicha N, Jihed B, Ines B, Soumaya K, Mahmoud A, Kamel Gh, Leila Ghedira C (2007) Antigenotoxic and free radical scavenging activities of extracts from Moricandia arvensis. Drug Chem Tox 30:361–382. https://doi.org/10.1080/01480540701522494

    Article  CAS  Google Scholar 

  19. Ines S, Ilef L, Aicha N, Jihed B, Mohamed BS, Wissem B, Ines B, Soumaya K, Kamel Gh, Leila Ghedira C (2010) Assessment of phenolic content, free-radical-scavenging capacity genotoxic and anti-genotoxic effect of aqueous extract prepared from Moricandia arvensis leaves. Food Chem Tox 48:710–715. https://doi.org/10.1016/j.fct.2009.11.053

    Article  CAS  Google Scholar 

  20. Ines S, Ludovik L, Herve K, Marie-Geneviève Dijoux F, Kamel Gh, Leila Ghedira C (2017) Antioxidant, antimutagenic, tanning and calpain induction activities of methanolic extract of Tunisian Plant (Moricandia arvensis L. (DC)). Iran J Pharm Res 16:119–134

    Google Scholar 

  21. Fumi T (2019) Acylated pelargonidin glycosides from the red-purple flowers of Iberis umbellata L. and the red flowers of Erysimum × cheiri (L.) Crantz (Brassicaceae). Phytoch 159:108–118. https://doi.org/10.1016/j.phytochem.2018.12.010

    Article  CAS  Google Scholar 

  22. Hatem B, Zine M, Hichem BJ, Susan M, Pedro MA (2005) Antioxidant phenolic glycosides from Moricandia arvensis. J Nat Prod 68:517–522. https://doi.org/10.1021/np049581m

    Article  CAS  Google Scholar 

  23. Sanjay KC, Dhamodharan P, Mutharasappan N, Jayshree B, Jeyaraman J (2017) Molecular modeling, dynamics studies and density functional theory approaches to identify potential inhibitors of SIRT4 protein from Homo sapiens: a novel target for the treatment of type 2 diabetes. J Biomol Struct Dyn 35:3316–3329. https://doi.org/10.1080/07391102.2016.1254117

    Article  CAS  Google Scholar 

  24. David K, Patrick T, Claude C, Philippe M, Roberto L, Jean-Luc D (2007) Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. J Phys Chem A 111:1138–1145. https://doi.org/10.1021/jp066496+

    Article  CAS  Google Scholar 

  25. Hassan M, Ashraf Z, Abbas Q, Raza H, Seo SY (2018) Exploration of novel human tyrosinase inhibitors by molecular modeling, docking and simulation studies. Interdiscip Sci Comput Life Sci 10:68–80. https://doi.org/10.1007/s12539-016-0171-x

    Article  CAS  Google Scholar 

  26. Amel J, Amal D, Abdelfatteh E, Majed K (2017) Essential oil composition and biological activities of eucalyptus globulus leaves extracts from Tunisia. J Essent Oil Bear Pl 20(2):438–448. https://doi.org/10.1080/0972060X.2017.1304832

    Article  Google Scholar 

  27. Malek E, Taroub B, Chokri M, Moktar H (2018) Phytochemicals, antioxidant, anti-acetyl-cholinesterase and antimicrobial activities of decoction and infusion of Pelargonium graveolens. Nat Product Res. https://doi.org/10.1080/14786419.2018.1547299

    Article  Google Scholar 

  28. Zina B, Françoise D, Sami Z (2022) Chemical variability and antioxidant activity of stems and seeds essential oils of Pituranthos chloranthus Benth and Hook collected from Tunisia. J Essent Oil Bear 25:369. https://doi.org/10.1080/0972060X.2022.2081518

    Article  Google Scholar 

  29. Kovàts E (1958) Characterization of organic compounds by gas chromatography. part 1 retention indices of aliphatic halides, alcohols, aldehydes and ketones. Helv Chim Acta 41:1915

    Article  Google Scholar 

  30. Naik DG, Dandge CN, Rupanar SV (2011) Chemical examination and evaluation of antioxidant and antimicrobial activities of essential oil from Gymnema sylvestre R. Br Leaves J Essent Oil Res 23:12–19. https://doi.org/10.1080/10412905.2011.9700451

    Article  CAS  Google Scholar 

  31. Michele C, Marios CK, Stefania DP, Youssef R (2022) An appraisal of critical factors configuring the composition of basil in minerals, bioactive secondary metabolites, micronutrients and volatile aromatic compounds. J F Comp Analy 111:104582. https://doi.org/10.1016/j.jfca.2022.104582

    Article  CAS  Google Scholar 

  32. Adams RP (2001) Quadrupole Mass Spectra of Compounds Listed in Order of Their RetentionTime on DB-5. Identification of Essential Oils Components by Gas Chromatography/ Quadrupole Mass Spectroscopy. Allured Publishing Corporation, Carol. Stream, IL, USA 456

  33. Rana L, Tewari G, Pande C, Prakash O, Bisht M, Bhatt S, Kanyal B, Rana K (2022) Identification of the aroma compounds of Ocimum americanum as a function of growth stages and their in vitro antioxidant and anti-inflammatory potential. J Essent Oil Bear Pl 25:403–418. https://doi.org/10.1080/0972060X.2022.2069479

    Article  CAS  Google Scholar 

  34. Brada M, Khelifa LH, Achour D, Wathelet JP, Lognay G (2011) Essential oil composition of Ocimum basilicum L. and Ocimum gratissimum L. from Algeria. J Essent Oil Bear Pl 14:810–814. https://doi.org/10.1080/0972060X.2011.10644009

    Article  CAS  Google Scholar 

  35. Davies NW (1990) Gas Chromatographic retention indexes of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20 M phases. J Chromatogr 503:1–24

    Article  CAS  Google Scholar 

  36. National Committee for Clinical Laboratory Standard (NCCLS 2002)

  37. Amina M, Maurizio F, Zouhaier B, Stella D, Luigi M, Damiano GM, Stefania F, Stefania C, Sami S (2017) Olive compounds attenuate oxidative damage induced in HEK-293 cells via MAPK signaling pathway. J F Foods 39:18–27. https://doi.org/10.1016/j.jff.2017.10.008

    Article  CAS  Google Scholar 

  38. Ye Q, Lau RK, Mathews IT, Birkholz EA, Watrous JD, Azimi CS, Corbett KD (2020) HORMA domain proteins and a Trip13-like ATPase regulate bacterial cGAS-like enzymes to mediate bacteriophage immunity. Mol Cell 77(4):709–722. https://doi.org/10.1016/j.molcel.2019.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Siramshetty VB, Nickel J, Omieczynski C, Gohlke BO, Drwal MN, Preissner R (2016) WITHDRAWN-a resource for withdrawn and discontinued drugs. Nuc Acids Res 44:1080–1086. https://doi.org/10.1093/nar/gkv1192

    Article  CAS  Google Scholar 

  40. Efe DD, Elif G, Tugba YO, Nuray UG (2020) Antioxidant activity of novel imidazo[2,1-b] thiazole derivatives: design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction. Bioorg Chem 103:104220. https://doi.org/10.1016/j.bioorg.2020.104220

    Article  CAS  Google Scholar 

  41. Zeraib A, Ramdani M, Lograda T, Chalard P, Figueredo G (2011) Chemical composition and antimicrobial activity of essential oil of Moricandia arvensis L. (DC.). Asian J Pl Sc 10:342–346. https://doi.org/10.3923/ajps.2011.342.346

    Article  CAS  Google Scholar 

  42. Aly SH, Kandil NH, Hemdan RM, Kotb SS, Zaki SS, Abdelaziz OM, AbdelRazek MMM, Almahli H, El Hassab MA, Al-Rashood ST, Binjubair FA, Eldehna WM (2023) GC/MS profiling of the essential oil and lipophilic extract of Moricandia sinaica boiss and evaluation of their cytotoxic and antioxidant activities. Mol 28(2193):1–17. https://doi.org/10.3390/molecules28052193

    Article  CAS  Google Scholar 

  43. Muhammet T, Sabri E (2012) Evaluation of fatty acid compositions and some seed characters of common wild plant species of Turkey. Tur J Biol 36:673–679. https://doi.org/10.3906/tar-1201-22

    Article  CAS  Google Scholar 

  44. Aïcha N, Didier H, Benoît B, Leila Ghedira C, Kamel Gh, Daniel B, Jérôme L (2009) Influence of growth phase and geographic origin on the essential oil composition of Pituranthos chloranthus from Tunisia. Nat Prod C 4:1585–1594. https://doi.org/10.1177/1934578X0900401127

    Article  Google Scholar 

  45. Ganesan M, Kanimozhi G, Pradhapsingh B, Haseeb AK, Abdullah SA, Aishah E, Brindha GR, Rajendra PN (2021) Phytochemicals reverse P-glycoprotein mediated multidrug resistance via signal transduction pathways. Bio Pha 139:111632. https://doi.org/10.1016/j.biopha.2021.111632

    Article  CAS  Google Scholar 

  46. Mabrouk H, Hayet E, Abdel Halim H, Hichem BJ, Anis R (2022) Access to new Schiff bases tethered with pyrazolopyrimidinone as antibacterial agents : Design and synthesis, molecular docking and DFT analysis. J Mol Structure 1248:131523. https://doi.org/10.1016/j.molstruc.2021.131523

    Article  CAS  Google Scholar 

  47. Hanan AG, Sana I, Ameni G, Hasan M, Erwann J, Moncef M (2023) Novel isoxazole linked 1, 5-benzodiazepine derivatives : Design, synthesis, molecular docking and antimicrobial evaluation. J Mol Structure 1272:134235. https://doi.org/10.1016/j.molstruc.2022.134235

    Article  CAS  Google Scholar 

  48. Riyadi PH, Sari ID, Kurniasih RA, Agustini TW, Swastawati F, Herawati VE, Tanod WA (2021) SwissADME predictions of pharmacokinetics and drug-likeness properties of small molecules present in spirulina platensis. IOP Conf Ser Earth Environ Sci 890:012021. https://doi.org/10.1088/1755-1315/890/1/012021

    Article  Google Scholar 

  49. Erickson HK, Lambert JM (2012) ADME of antibody–maytansinoid conjugates. AAPS J 14(4):799–805. https://doi.org/10.1208/s12248-012-9386-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Borah P, Hazarika S, Deka S (2020) Application of advanced technologies in natural product research: a review with special emphasis on ADMET profiling. Curr Drug Metab 21(10):751–767

    Article  CAS  PubMed  Google Scholar 

  51. Coltescu AR, Butnariu M, Sarac ET (2020) The importance of solubility for new drug molecules. Biomed Pharmacol J 13(2):577–583. https://doi.org/10.2174/1389200221666200714144911

    Article  CAS  Google Scholar 

  52. Daina A, Michielin O, Zoete VJDOS (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of High Education and Scientific Research, Tunisia.

Funding

The authors declare that no funding has been received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majed Kammoun.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 40 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdi, S., Aydi, R., Dhouib, I. et al. Chemical Composition, Antibacterial and Cytotoxic Activities of Volatile Fraction and Water Extracts of Moricandia arvensis L. (DC) and Molecular Docking Study. Chemistry Africa 7, 2453–2465 (2024). https://doi.org/10.1007/s42250-024-00903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-024-00903-8

Keywords

Navigation