Skip to main content
Log in

Essential Oil Extracted from the Leaves of Curcuma Longa L.: Application of an Agro-Industrial Residue in the Development of Anti-Inflammatory Nanoemulsions Intended for Skin Delivery

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Introduction

Curcuma longa L. leaves are a residual material of the rhizome harvest and arouse interest in the investigation of their properties.

Purpose

This study aimed to extract and characterise the essential oil (EO) from C. longa leaves and compare the feasibility of delivering of the EO and its major compound in nanoemulsions for the further evaluation of in vitro anti-inflammatory activity and preliminary safety profile.

Methods

The EO was obtained by hydrodistillation and analysed by gas chromatography (GC-MS). The nanoemulsions were prepared in a high-pressure homogeniser and characterised. The in vitro anti-inflammatory activity was measured using an LPS-stimulated macrophage model (RAW 264.7). The preliminary safety profile was evaluated by cell culture (HaCaT and MRC-5) and by the hen’s egg-chorioallantoic membrane test (HET-CAM).

Results

In the CG-MS analysis, 10 compounds were identified: α-phellandrene (49.93%), terpinolene (27.10%), and 1,8-cineole (15.41%) being the main compounds. All nanoemulsions showed droplet size < 300 nm, polydispersity index < 0.2, and zeta potential <-30 mV, indicative of monodisperse formulations without the tendency for droplet aggregation. The nanoemulsions showed an α-phellandrene content greater than 91.00%. The assessment of the irritant potential by HET-CAM assay shows no irritating effects on the membrane. In the cytotoxicity evaluation, no significant alterations were observed in HaCaT and MRC-5 cells. Regarding the in vitro anti-inflammatory activity, the inhibition of NO production by the EO nanoemulsion was evidenced with a low cytotoxicity rate for α-phellandrene concentrations below 125 µg/mL.

Conclusion

These results show the potential of the EO extracted from leaves, which are a waste product from rhizome harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Bansal RP, Bahl JR, Garg SN, Naqvi AA, Kumary S (2002) Differential chemical compositions of the essential oils of the shoot organs, rhizomes and rhizoids in the turmeric Curcuma longa grown in indo-gangetic plains. Pharm Biol 40:384–389. https://doi.org/10.1076/phbi.40.5.384.8458

    Article  CAS  Google Scholar 

  2. Chane-Ming J, Vera R, Chalchat J-C, Cabassu P (2002) Chemical composition of essential oils from rhizomes, leaves and flowers of Curcuma longa L. from Reunion Island. J Essent Oil Res 14:249–251. https://doi.org/10.1080/10412905.2002.9699843

    Article  CAS  Google Scholar 

  3. Essien E, Newby J, Walker T, Setzer W, Ekundayo O (2015) Chemotaxonomic characterization and in-Vitro Antimicrobial and cytotoxic activities of the Leaf essential oil of Curcuma longa grown in Southern Nigeria. Medicines 2:340–349. https://doi.org/10.3390/medicines2040340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ibáñez MD, Blázquez MA (2021) Curcuma longa L. Rhizome essential oil from extraction to its agri-food applications. A review. Plants 10:1–31. https://doi.org/10.3390/plants10010044

    Article  CAS  Google Scholar 

  5. Jugreet BS, Mahomoodally MF, Sinan KI, Zengin G, Abdallah HH (2020) Chemical variability, pharmacological potential, multivariate and molecular docking analyses of essential oils obtained from four medicinal plants. Ind Crops Prod 150:112394–112405. https://doi.org/10.1016/j.indcrop.2020.112394

    Article  CAS  Google Scholar 

  6. Mans DRA, Djotaroeno M, Friperson P, Pawirodihardjo J (2019) Phytochemical and pharmacological support for the traditional uses of zingiberacea species in Suriname - A review of the literature. Pharmacogn J 11:1511–1525. https://doi.org/10.5530/PJ.2019.11.232

    Article  CAS  Google Scholar 

  7. Kukula-Koch W, Grabarska A, Łuszczki J, Czernicka L, Nowosadzka E, Gumbarewicz E, Jarząb A, Audo G, Upadhyay S, Głowniak K, Stepulak A (2018) Superior anticancer activity is demonstrated by total extract of Curcuma longa L. as opposed to individual curcuminoids separated by centrifugal partition chromatography. Phyther Res 32:933–942. https://doi.org/10.1002/ptr.6035

    Article  CAS  Google Scholar 

  8. Kumar KN, Venkataramana M, Allen JA, Chandranayaka S, Murali HS, Batra HV (2016) Role of Curcuma longa L. essential oil in controlling the growth and zearalenone production of Fusarium Graminearum. Lwt- Food Sci Technol 69:522–528. https://doi.org/10.1016/j.lwt.2016.02.005

    Article  CAS  Google Scholar 

  9. Russo ER, Facincani I, Nakazato KC, Coimbra TM, Crevelin EJ, Pereira AMS, Carmona F (2018) Oral administration of powdered dried rhizomes of Curcuma longa L. (turmeric, Zingiberaceae) is effective in the treatment of doxorubicin-induced kidney injury in rats. Phyther Res 32:2408–2416. https://doi.org/10.1002/ptr.6176

    Article  CAS  Google Scholar 

  10. Yue GGL, Chan BCL, Hon PM, Lee MYH, Fung KP, Leung PC, Lau CBS (2010) Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa. Food Chem Toxicol 48:2011–2020. https://doi.org/10.1016/j.fct.2010.04.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yue GGL, Kwok HF, Lee JKM, Jiang L, Chan KM, Cheng L, Wong ECW, Leung PC, Fung KP, Lau CBS (2015) Novel anti-angiogenic effects of aromatic-turmerone, essential oil isolated from spice turmeric. J Funct Foods 15:243–253. https://doi.org/10.1016/j.jff.2015.03.030

    Article  CAS  Google Scholar 

  12. Akinyemi AJ, Adeniyi PA (2018): Effect of Essential Oils from Ginger (Zingiber officinale) and Turmeric (Curcuma longa) Rhizomes on Some Inflammatory Biomarkers in Cadmium Induced Neurotoxicity in Rats. J. Toxicol. 1–7 (2018). https://doi.org/10.1155/2018/4109491

  13. Avanço GB, Ferreira FD, Bomfim NS, Santos D, de Peralta PA, Mallmann RM, Brugnari CA, Filho TA, de Mikcha BA, Machinski JMG (2017) Curcuma longa L. essential oil composition, antioxidant effect, and effect on Fusarium verticillioides and fumonisin production. Food Control 73:806–813. https://doi.org/10.1016/j.foodcont.2016.09.032

    Article  CAS  Google Scholar 

  14. Bezerra AN, de Oliveira RB, Silva R, da, Maia JGS, Mourão RHV (2016) Light impact assessment in planting and production of Curcuma longa in the Amazon, based on the analysis of its essential oils from leaves and rhizomes. Rev Fitos 10:220–372. https://doi.org/10.5935/2446-4775.20160022

    Article  Google Scholar 

  15. Braga MC, Vieira ECS, de Oliveira TF (2018) Curcuma longa L. leaves: characterization (bioactive and antinutritional compounds) for use in human food in Brazil. Food Chem 265:308–315. https://doi.org/10.1016/j.foodchem.2018.05.096

    Article  CAS  PubMed  Google Scholar 

  16. Dosoky NS, Setzer WN (2018) Chemical composition and biological activities of essential oils of curcuma species. Nutrients 10:1196–1238. https://doi.org/10.3390/nu10091196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferreira FD, Kemmelmeier C, Arrotéia CC, Da Costa CL, Mallmann CA, Janeiro V, Ferreira FMD, Mossini SAG, Silva EL, Machinski M (2013) Inhibitory effect of the essential oil of Curcuma longa L. and curcumin on aflatoxin production by aspergillus flavus link. Food Chem 136:789–793. https://doi.org/10.1016/j.foodchem.2012.08.003

    Article  CAS  PubMed  Google Scholar 

  18. Kutti Gounder D, Lingamallu J (2012) Comparison of chemical composition and antioxidant potential of volatile oil from fresh, dried and cured turmeric (Curcuma longa) rhizomes. Ind Crops Prod 38:124–131. https://doi.org/10.1016/j.indcrop.2012.01.014

    Article  CAS  Google Scholar 

  19. Govindaraj P, Kandasubramanian B, Kodam KM (2014) Molecular interactions and antimicrobial activity of curcumin (Curcuma longa) loaded polyacrylonitrile films. Mater Chem Phys 147:934–941. https://doi.org/10.1016/j.matchemphys.2014.06.040

    Article  CAS  Google Scholar 

  20. Altir NKM, Ali AMA, Gaafar ARZ, Qahtan AA, Abdel-Salam EM, Alshameri A, Hodhod MS, Almunqedhi B (2021) Phytochemical profile, in vitro antioxidant, and anti-protein denaturation activities of Curcuma longa L. Rhizome and leaves. Open Chem 19:945–952. https://doi.org/10.1515/chem-2021-0086

    Article  CAS  Google Scholar 

  21. Chaaban A, Gomes EN, Richardi VS, Martins CEN, Brum JS, Navarro-Silva MA, Deschamps C, Molento MB (2019) Essential oil from Curcuma longa leaves: can an overlooked by-product from turmeric industry be effective for myiasis control? Ind. Crops Prod 132:352–364. https://doi.org/10.1016/j.indcrop.2019.02.030

    Article  CAS  Google Scholar 

  22. Halisçelik E, Soytas MA (2019) Sustainable development from millennium 2015 to Sustainable Development Goals 2030. Sustain Dev 27:545–572. https://doi.org/10.1002/sd.1921

    Article  Google Scholar 

  23. Pandey KP, Mishra RK, Kamran A, Mishra P, Bajaj AK, Dikshit A (2010) Studies on antidermatophytic activity of waste leaves of Curcuma longa L. Physiol. Mol Biol Plants 16:177–185. https://doi.org/10.1007/s12298-010-0019-5

    Article  Google Scholar 

  24. Kumar A, Agarwal K, Singh M, Saxena A, Yadav P, Maurya AK, Yadav A, Tandon S, Chanda D, Bawankule DU (2018) Essential oil from waste leaves of Curcuma longa L. alleviates skin inflammation. Inflammopharmacology 26:1245–1255. https://doi.org/10.1007/s10787-018-0447-3

    Article  CAS  PubMed  Google Scholar 

  25. Priya R, Prathapan A, Raghu KG, Menon AN (2012) Chemical composition and in vitro antioxidative potential of essential oil isolated from Curcuma longa L. leaves. Asian Pac J Trop Biomed 2:S695–S699. https://doi.org/10.1016/S2221-1691(12)60298-6

    Article  Google Scholar 

  26. Sindhu S, Chempakam B, Leela NK, Suseela Bhai R (2011) Chemoprevention by essential oil of turmeric leaves (Curcuma longa L.) on the growth of aspergillus flavus and aflatoxin production. Food Chem Toxicol 49:1188–1192. https://doi.org/10.1016/j.fct.2011.02.014

    Article  CAS  PubMed  Google Scholar 

  27. Ali H, Al-Khalifa AR, Aouf A, Boukhebti H, Farouk A (2020) Effect of nanoencapsulation on volatile constituents, and antioxidant and anticancer activities of Algerian Origanum Glandulosum Desf. Essential oil. Sci Rep 10:1–9. https://doi.org/10.1038/s41598-020-59686-w

    Article  CAS  Google Scholar 

  28. Liang R, Xu S, Shoemaker CF, Li Y, Zhong F, Huang Q (2012) Physical and antimicrobial properties of peppermint oil nanoemulsions. J Agric Food Chem 60:7548–7555. https://doi.org/10.1021/jf301129k

    Article  CAS  PubMed  Google Scholar 

  29. Mou D, Chen H, Du D, Mao C, Wan J, Xu H, Yang X (2008) Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. Int J Pharm 353:270–276. https://doi.org/10.1016/j.ijpharm.2007.11.051

    Article  CAS  PubMed  Google Scholar 

  30. Salvia-Trujillo L, Rojas-Graü A, Soliva-Fortuny R, Martín-Belloso O (2015) Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocoll 43:547–556. https://doi.org/10.1016/j.foodhyd.2014.07.012

    Article  CAS  Google Scholar 

  31. Singh Y, Gopal J, Raval K, Ali F, Chaurasia M, Jain NK, Chourasia MK (2017) Nanoemulsion: concepts, development and applications in drug delivery. J Control Release 252:28–49. https://doi.org/10.1016/j.jconrel.2017.03.008

    Article  CAS  PubMed  Google Scholar 

  32. Brasil (2010): Farmacopeia Brasileira.

  33. Adams RP (2017): Identification of essential oil components by gas chromatography/mass spectroscopy.

  34. Lin J-J, Hsu S-C, Lu K-W, Ma Y-S, Wu C-C, Lu H-F, Chen J-C, Lin J-G, Wu P-P, Chung J-G (2016) Alpha-phellandrene-induced apoptosis in mice leukemia WEHI-3 cells in vitro. Environ Toxicol 31:1640–1651. https://doi.org/10.1002/tox.22168

    Article  CAS  PubMed  Google Scholar 

  35. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  PubMed  Google Scholar 

  36. Dias D, de Colombo O, Kelmann M, Kaiser RG, Lucca S, Teixeira LG, Limberger HF, Veiga RP, Koester VF (2014) Optimization of Copaiba oil-based nanoemulsions obtained by different preparation methods. Ind Crops Prod 59:154–162. https://doi.org/10.1016/j.indcrop.2014.05.007

    Article  CAS  Google Scholar 

  37. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  38. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N]nitrate in biological fluids. Anal Biochem 126:131–138. https://doi.org/10.1016/0003-2697(82)90118-X

    Article  CAS  PubMed  Google Scholar 

  39. Koch C, Reichling J, Kehm R, Sharaf MM, Zentgraf H, Schneele J, Schnitzler P (2008) Efficacy of anise oil, dwarf-pine oil and chamomile oil against thymidine-kinase-positive and thymidine-kinase-negative herpesviruses. J Pharm Pharmacol 60:1545–1550. https://doi.org/10.1211/jpp/60.11.0017

    Article  CAS  PubMed  Google Scholar 

  40. Yanti R, Nurdiawati H, Wulandari P, Pranoto Y, Cahyanto MN (2021) Chemical composition and antifungal activity of oil extracted from leaves turmeric (Curcuma longa). Canrea J Food Technol Nutr Culin J 4:123–131. https://doi.org/10.20956/canrea.v4i2.453

    Article  Google Scholar 

  41. Parveen Z, Nawaz S, Siddique S, Shahzad K (2013) Composition and antimicrobial activity of the essential oil from leaves of Curcuma longa L. Kasur variety. Indian J Pharm Sci 75:117–122. https://doi.org/10.4103/0250-474X.113544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tripathi AK, Prajapati V, Verma N, Bahl JR, Bansal RP, Khanuja SP, Kumar S (2002) Bioactivities of the leaf essential oil of Curcuma longa (var. ch-66) on three species of stored-product beetles (Coleoptera). J Econ Entomol 95:183–189. https://doi.org/10.1603/0022-0493-95.1.183

    Article  CAS  PubMed  Google Scholar 

  43. de Souza AVV, Dos Santos US, de Sá Carvalho JR, Barbosa BDR, Canuto KM, Rodrigues THS (2018) Chemical composition of essential oil of leaves from Lippia Schaueriana Mart. Collected in the Caatinga Area. Molecules 23:2480. https://doi.org/10.3390/molecules23102480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cabral C, Poças J, Gonçalves MJ, Cavaleiro C, Cruz MT, Salgueiro L (2015) Ridolfia Segetum (L.) Moris (Apiaceae) from Portugal: a source of safe antioxidant and anti-inflammatory essential oil. Ind Crops Prod 65:56–61. https://doi.org/10.1016/j.indcrop.2014.11.041

    Article  CAS  Google Scholar 

  45. de Christo Scherer MM, Marques FM, Figueira MM, Peisino MCO, Schmitt EFP, Kondratyuk TP, Endringer DC, Scherer R, Fronza M (2019) Wound healing activity of terpinolene and α-phellandrene by attenuating inflammation and oxidative stress in vitro. J Tissue Viability 28:94–99. https://doi.org/10.1016/j.jtv.2019.02.003

    Article  PubMed  Google Scholar 

  46. Lima TS, Silva MFS, Nunes XP, Colombo AV, Oliveira HP, Goto PL, Blanzat M, Piva HL, Tedesco AC, Siqueira-Moura MP (2021) Cineole-containing nanoemulsion: development, stability, and antibacterial activity. Chem Phys Lipids 239:105113. https://doi.org/10.1016/j.chemphyslip.2021.105113

    Article  CAS  PubMed  Google Scholar 

  47. Pavoni L, Perinelli DR, Ciacciarelli A, Quassinti L, Bramucci M, Miano A, Casettari L, Cespi M, Bonacucina G, Palmieri GF (2020) Properties and stability of nanoemulsions: how relevant is the type of surfactant? J Drug Deliv Sci Technol 58:101772. https://doi.org/10.1016/j.jddst.2020.101772

    Article  CAS  Google Scholar 

  48. Rai VK, Mishra N, Yadav KS, Yadav NP (2018) Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J Control Release 270:203–225. https://doi.org/10.1016/j.jconrel.2017.11.049

    Article  CAS  PubMed  Google Scholar 

  49. Morteza-Semnani K, Saeedi M, Akbari J, Eghbali M, Babaei A, Hashemi SMH, Nokhodchi A (2022) Development of a novel nanoemulgel formulation containing cumin essential oil as skin permeation enhancer. Drug Deliv Transl Res 12:1455–1465. https://doi.org/10.1007/s13346-021-01025-1

    Article  CAS  PubMed  Google Scholar 

  50. Barradas TN, Senna JP, Cardoso SA, Nicoli S, Padula C, Santi P, Rossi F, de Holanda e Silva KG, Mansur CRE (2017) Hydrogel-thickened nanoemulsions based on essential oils for topical delivery of psoralen: permeation and stability studies. Eur J Pharm Biopharm 116:38–50. https://doi.org/10.1016/j.ejpb.2016.11.018

    Article  CAS  PubMed  Google Scholar 

  51. Pintatum A, Maneerat W, Logie E, Tuenter E, Sakavitsi ME, Pieters L, Berghe W, Vanden, Sripisut T, Deachathai S, Laphookhieo S (2020) In vitro anti-inflammatory, anti‐oxidant, and cytotoxic activities of four curcuma species and the isolation of compounds from curcuma aromatica rhizome. Biomolecules 10:799. https://doi.org/10.3390/biom10050799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. da Silva JD, Gomes MV, Cabral LM, de Sousa VP (2019) Evaluation of the in vitro release and permeation of Cordia Verbenacea DC essential oil from topical dosage forms. J Drug Deliv Sci Technol 53:101173. https://doi.org/10.1016/j.jddst.2019.101173

    Article  CAS  Google Scholar 

  53. Salas-Oropeza J, Jimenez-Estrada M, Perez-Torres A, Castell-Rodriguez AE, Becerril-Millan R, Rodriguez-Monroy MA, Jarquin-Yañez K, Canales-Martinez MM (2021) Wound healing activity of α-pinene and α-phellandrene. Molecules 26:1–14. https://doi.org/10.3390/molecules26092488

    Article  CAS  Google Scholar 

  54. Ahmad N, Ahmad R, Al-Qudaihi A, Alaseel SE, Fita IZ, Khalid MS, Pottoo FH (2019) Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Adv 9:20192–20206. https://doi.org/10.1039/c9ra03102b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Siqueira HDAS, Neto BS, Sousa DP, Gomes BS, da Silva FV, Cunha FVM, Wanderley CWS, Pinheiro G, Cândido AGF, Wong DVT, Ribeiro RA, Lima-Júnior RCP, Oliveira FA (2016) α-Phellandrene, a cyclic monoterpene, attenuates inflammatory response through neutrophil migration inhibition and mast cell degranulation. Life Sci 160:27–33. https://doi.org/10.1016/j.lfs.2016.07.008

    Article  CAS  PubMed  Google Scholar 

  56. Gonçalves RLG, Cunha FVM, Sousa-Neto BPS, Oliveira LSA, Lopes ME, Rezende DC, Sousa IJO, Nogueira KM, Souza LKM, Medeiros JVR, Wong DVT, Pereira VMP, Lima-Júnior RCP, Sousa DP, Oliveira CPC, Almeida FRC, de Oliveira F (2020) A.: α-Phellandrene attenuates tissular damage, oxidative stress, and TNF-α levels on acute model ifosfamide-induced hemorrhagic cystitis in mice. Naunyn Schmiedebergs Arch Pharmacol 393:1835–1848. https://doi.org/10.1007/s00210-020-01869-3

    Article  CAS  PubMed  Google Scholar 

  57. Soba SV, Babu M, Panonnummal R (2021) Ethosomal gel formulation of alpha phellandrene for the transdermal delivery in gout. Adv Pharm Bull 11:137–149. https://doi.org/10.34172/apb.2021.015

    Article  CAS  Google Scholar 

  58. Derouiche MTT, Abdennour S (2017) HET-CAM test. Application to shampoos in developing countries. Toxicol Vitr 45:393–396. https://doi.org/10.1016/j.tiv.2017.05.024

    Article  CAS  Google Scholar 

  59. Vinardell MP, Macián M (1994) Comparative study of the HET-CAM test and the Draize eye test for assessment of irritancy potential. Toxicol Vitr 8:467–470. https://doi.org/10.1016/0887-2333(94)90170-8

    Article  CAS  Google Scholar 

  60. Nastiti CMRR, Ponto T, Abd E, Grice JE, Benson HAE, Roberts MS (2017) Topical nano and microemulsions for skin delivery. Pharmaceutics 9:37–62. https://doi.org/10.3390/pharmaceutics9040037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Oliveira G, Marques C, de Oliveira A, de Almeida dos Santos A, do Amaral W, Ineu RP, Leimann FV, Peron AP, Igarashi-Mafra L, Mafra MR (2021) Extraction of bioactive compounds from Curcuma longa L. using deep eutectic solvents: in vitro and in vivo biological activities. Innov Food Sci Emerg Technol 70:102697. https://doi.org/10.1016/j.ifset.2021.102697

    Article  CAS  Google Scholar 

Download references

Funding

Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), PqG 2021 - grant 21/2551-0002064-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Letícia Scherer Koester.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mossmann, V., Weimer, P., Nunes, K.A.A. et al. Essential Oil Extracted from the Leaves of Curcuma Longa L.: Application of an Agro-Industrial Residue in the Development of Anti-Inflammatory Nanoemulsions Intended for Skin Delivery. Chemistry Africa 7, 1849–1864 (2024). https://doi.org/10.1007/s42250-023-00872-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00872-4

Keywords

Navigation