Skip to main content
Log in

Vibrational Spectroscopic, Optical Properties and Electrical Conduction Mechanism of Lead-Free Perovskite Cs2ZnCl4

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In recent years, the metallic halide perovskite materials without lead have drawn a lot of interest as incredibly fascinating materials for photovoltaic applications. These materials offer exceptional stability, lower toxicity, and convenient process ability making them attractive alternatives to traditional lead-based perovskites. Recent studies have demonstrated its successful utilization in indoor energy applications, thereby suggesting its potential for integration into building-integrated devices. Using the slow evaporation solution growth technique, we have successfully synthesized a non-toxic Cs2ZnCl4 metal halide compound. The X-ray diffraction measurement at room temperature that the Cs2ZnCl4 crystallizes in the orthorhombic phase of the Pnma space group. The morphological characteristics and the ratios of the constituents of Cs2ZnCl4 were determined by the SEM–EDX study. The assignment of the Raman spectrum was based on DFT calculations. The optimized geometries, vibrational frequencies, and Raman intensities were calculated using the CAM-B3LYB technique with the 6-31G(d,p) basis set. Furthermore, the direct band gap of Cs2ZnCl4 was determined to be \(4.04 {\text{eV}}\) based on UV–Visible spectroscopy measurement and DFT calculations. In order to model the electrical response of the grain and the grain boundary, we have chosen an equivalent circuit composed by a series combination of two cells which are composed by a parallel combination of resistance (R) and constant phase element (CPE). The conductivity frequency dependence is interpreted using the non-overlapping small polar tunneling model (NSPT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Green M, Ho-Baillie A, Snaith H (2014) Nat Photonics 8:506–514

    Article  CAS  Google Scholar 

  2. Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos LM, Credgington D, Hanusch F, Bein T, Snaith HJ, Friend RH (2014) Nat Nanotech 9:687–692

    Article  CAS  Google Scholar 

  3. Fang HH, Wang F, Adjokatse S, Zhao N, Even J, Antonietta Loi M (2015) Light Sci Appl 5:e16056–e16056

    Article  Google Scholar 

  4. Stranks SD, Nayak PK, Zhang W, Stergiopoulos T, Snaith HJ (2015) Angew Chem Int Ed 54:3240–3248

    Article  CAS  Google Scholar 

  5. Huang H, Zhao F, Liu L, Zhang F, Wu X, Shi L, Zou B, Peiand Q, Zhong H, Appl ACS (2015) Mater Interfaces 7:28128–28133

    Article  CAS  Google Scholar 

  6. Wei Y, Xu Y, Wang Q, Wang J, Lu H, Zhu J (2020) Chem Commun 56:5413–5416

    Article  CAS  Google Scholar 

  7. Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J (2016) Nat Energy 2:16177

    Article  Google Scholar 

  8. Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J (2019) Nat Photonics 13:460–466

    Article  CAS  Google Scholar 

  9. Zhang W, Eperon GE, Snaith HJ (2016) Nat Energy 1:16048

    Article  CAS  Google Scholar 

  10. Sadhukhan P, Kundu S, Roy A, Ray A, Maji P, Dutta H, Pradhan SK, Das S (2018) Cryst Growth Des 18:3428–3432

    Article  CAS  Google Scholar 

  11. Bala A, Deb A, Kumar V (2018) J Phys Chem C 13(122):7464–7473

    Article  Google Scholar 

  12. Maji P, Ray A, Sadhukhan P, Roy A, Das S (2018) Mater Lett 227:268–271

    Article  CAS  Google Scholar 

  13. Babayigit A, Duy Thanh D, Ethirajan A, Manca J, Muller M, Boyen HG, Conings B (2016) Sci Rep 6:18721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eperon GE, Habisreutinger SN, Leijtens T, Bruijnaers BJ, Van Franeker JJ, de Quilettes DW, Pathak S, Sutton RJ, Grancini G, Ginger DS, Janssen RAJ, Petrozza A, Snaith HJ (2015) ACS Nano 9:9380–9393

    Article  CAS  PubMed  Google Scholar 

  15. Babayigit A, Ethirajan A, Muller M, Conings B (2016) Nat Mater 15:247–251

    Article  CAS  PubMed  Google Scholar 

  16. Roknuzzaman M, Ostrikov K, Wang H, Du A, Tesfamichael T (2017) Sci Rep 7:14025

    Article  PubMed  PubMed Central  Google Scholar 

  17. Peedikakkandy L, Bhargava P (2016) RSC Adv 6:19857–19860

    Article  CAS  Google Scholar 

  18. Wang A, Guo Y, Muhammad F, Deng Z (2017) Chem Mater 29:6493–6501

    Article  CAS  Google Scholar 

  19. Hayatullah, Murtaza G, Muhammad S, Naeem S, Khalid M, Manzar A (2013) Acta Phys Pol, A 124:102–107

    Article  CAS  Google Scholar 

  20. Kessentini Y, Ben Ahmed A, Al-Juaid SS, Elaoud Z (2022) J Solid-State Chem 313:123286

    Article  Google Scholar 

  21. Benhaliliba M, Ben Ahmed A, Kaleli M, Meftah SE (2022) Opt Mater 132:112782

    Article  CAS  Google Scholar 

  22. Imran M, Khalid M, Jawaria R, Ali A, Asghar MA, Shafiq Z, Assiri MA, Lodhi HM, Carmo Braga AA (2021) ACS Omega 6:33914–33922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yanai T, Tewand DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B and Petersson G (2009) Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT See also: http://www.gaussian.Com

  25. Roy D, Dennington II, Keith Todd A, MillamJohn M. Semichem, Inc, 2000–2016

  26. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839–845

    Article  CAS  PubMed  Google Scholar 

  27. Lim AR, Han OH, Jeong S (2003) J Phys Chem Solids 64:933–937

    Article  CAS  Google Scholar 

  28. McGinnety JA (1974) Inorg Chem 13:1057–1061

    Article  CAS  Google Scholar 

  29. McGinnety JA (1947) Inorg Chem 13:1057–1061

    Article  Google Scholar 

  30. Dereń PJ, Derouet J, PorcherandD P, Svoronos, (1997) J Mol Struct 404:167–174

    Article  Google Scholar 

  31. Wong PTT (1976) J Chem Phys 64:2186–2191

    Article  CAS  Google Scholar 

  32. Avery JS, Burbridge CD, Goodgame DML (1968) Spectrochim Acta, Part A 24:1721–1726

    Article  CAS  Google Scholar 

  33. Ben Rhaiem A, Hlel F, Guidara K, Gargouri M (2007) Spectrochimica Acta Part A 66:1107–1109

    Article  CAS  Google Scholar 

  34. Quicksall CO, Spiro TG (1966) Inorg Chern 5:2232

    Article  CAS  Google Scholar 

  35. Khan SA, Al-Hazmi FS, Al-Heniti S, Faidah AS, Al-Ghamdi AA (2010) Curr Appl Phys 10:145

    Article  Google Scholar 

  36. Lv J, Xu M, Lin S, Shao X, Zhang X, Liu Y, Wang Y, Chen Z, Ma Y (2018) Nano Energy 51:489

    Article  CAS  Google Scholar 

  37. Kobayashi N, Kuwae H, Oshima J, Ishimatsu R, Tashiro S, Imato T, Adachi C, Shoji S, Mizuno J (2018) J Lumin 200:19–23

    Article  CAS  Google Scholar 

  38. Kalthoum R, Ben Bechir M, Ben Rhaiem A (2020) Physica E 124:114235

    Article  CAS  Google Scholar 

  39. Qaid SMH, Al-Asbahi BA, Ghaithan HM, Al Salhi MS, Al Dwayyan S (2020) J Colloid Interface Sci 563:426–434

    Article  CAS  PubMed  Google Scholar 

  40. Fritzsche H and Tauc J (1974). Plenum Press, New York, p 254

  41. Gagandeep SK, Lark BS, Sahota HS (2000) Nucl Sci Eng 134:208–217

    Article  CAS  Google Scholar 

  42. Shahane GS, More BM, Rotti CB, Deshmukh LP (1997) Mater Chem Phys 47:263–267

    Article  CAS  Google Scholar 

  43. Bhattacharyya D, Chaudhuri S, Pal AK (1992) Vacuum 43:313–316

    Article  CAS  Google Scholar 

  44. Kalthoum R, Ben bechir M, Ben Rhaiem A (2020) Physica E Low Dimens Syst Nanostruct 124:114235

    Article  CAS  Google Scholar 

  45. Pradhan DK, Misra P, Puli VS, Sahoo S, Pradhan DK, Katiyar RS (2014) J Appl Phys 115:243904

    Article  Google Scholar 

  46. Ray A, Roy A, De S, Chatterjee S, Das S (2018) J Appl Phys 123:104102

    Article  Google Scholar 

  47. Das S, Ghosh A (2017) J Phys Chem B 121:5422

    Article  CAS  PubMed  Google Scholar 

  48. Tealdi C, Chiodelli G, Malavasi L, Flor G, Fisica C, Unita ICNR, Taramelli V, Pavia I (2004) J Mater Chem 14:3553

    Article  CAS  Google Scholar 

  49. Wang T, Hu J, Yang H, Jin L, Wei X, Li C, Yan F, Lin Y (2017) J Appl Phys 121:084103

    Article  Google Scholar 

  50. Karoui K, Ben Rhaiem A, Hlel F, Arous M, Guidara K (2012) Mater Chem Phys 133:1

    Article  CAS  Google Scholar 

  51. Zuo XZ, Yang J, Yuan B, Song DP, Tang XW, Zhang KJ, Zhu XB, Song WH, Dai JM, Sun YP (2015) J Appl Phys 117:114101

    Article  Google Scholar 

  52. Pattanayak DK, Parida RK, Nayak NC, Panda AB, Parida BN (2018) J Mater Sci Mater Electron 29:6215

    Article  CAS  Google Scholar 

  53. Mateyshina Y, Slobodyuk A, Kavun V, Uvarov N (2018) Solid State Ionics 324:196

    Article  CAS  Google Scholar 

  54. Dhara A, Sain S, Das S, Pradhan SK (2018) Mater Res Bull 97:169

    Article  CAS  Google Scholar 

  55. Ben bechir M, Ben Rhaiem A (2021) J Solid State Chem 296:122021

    Article  CAS  Google Scholar 

  56. Ben Bechir M, Dhaou MH (2021) Mater Res Bull 144:111473

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Ben Rhaiem.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romdhane, I., Ben Bechir, M., Altarifi, S.M. et al. Vibrational Spectroscopic, Optical Properties and Electrical Conduction Mechanism of Lead-Free Perovskite Cs2ZnCl4. Chemistry Africa 7, 2209–2220 (2024). https://doi.org/10.1007/s42250-023-00869-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00869-z

Keywords

Navigation