Skip to main content

Advertisement

Log in

Solid State Synthesis, Spectroscopic, X-ray and Antibacterial Studies of Zn(II) and Fe(III) Complexes of Pyridine-3-Carboxamide and 2-Hydroxybenzoic Acid

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Mixed-ligand metal complexes are being prepared under solvent-free conditions and this has formed a vital ongoing research focus. One of the purposes is to overcome antimicrobial resistance while offering synthetic alternative to overcome environmental issues left behind by conventional use of solvents. In this work, zinc (II) and iron (III) complexes of pyridine-3-carboxamide (Pnc) containing 2-hydroxybenzoic acid (Hba) were synthesized as potential antibacterial agents through solvent-free process. The complexes were characterized using magnetic moment determination, spectroscopic and X-ray powder diffraction techniques. Analytical, magnetic, and spectral results suggested that the compounds have molecular formulae [Zn(C6H6N2O)2(C7H5O3)2] and [Fe(C6H6N2O)2(C7H5O3)2(H2O)2] with octahedral d10 and d5 configurations respectively. Pnc behaved as a bidentate ligand in the Zn(II) complex (binding through the two nitrogen atoms) and as a monodentate ligand toward Fe(III) ions while Hba acted as a monodentate ligand. NMR spectrum of the Zn(II) complex confirmed deprotonation of carboxyl group in Hba suggesting coordination of the metal via oxygen atom. Sharp X-ray diffraction peaks revealed highly crystalline complex compared to those of the ligands. Zeta potential and particle size measurements indicated that FeIII complex could have higher uptake in a biological system whereas the ZnII complex could penetrate better. Antibacterial sensitivity tests showed that metal coordination improved activities of the two parent ligands against Staphylococcus aureus, Escherichia coli, Salmonella typhi and Bacillus subtilis. The synthetic procedure presented for these potential antibacterial agents was fast, simple to follow with good yields, and environmentally safe without the need of toxic solvents or external heating.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Altun O, Suozer M (2017) The synthesis and spectral analysis of Au(III) complex of caffeine and nicotinamide. J Turkis Chem Soc 4:1–10

    CAS  Google Scholar 

  2. Osowole AA, Odutemu AE (2016) Synthesis, magnetic, spectral, and antibacterial properties of some metal (II) complexes of mixed drugs, aspirin and vitamin B2. Lett Health Biol Sci 1(2):30–33. https://doi.org/10.15436/2475-6245.16.009

    Article  Google Scholar 

  3. Kose DA, Kaya A, Necefoglu H (2007) Synthesis and characterization of bis-(N, N-diethylnicotinamide) m-hydroxybenzoate complexes of Co(II), Ni(II), Cu(II), and Zn(II). Russian J Coord Chem 33(6):422–427. https://doi.org/10.1134/s1070328407060073

    Article  Google Scholar 

  4. Sorenson JRJ (1982) In: Sigel H (ed) Metal Ions in Biological Systems vol. 14, Marcel Dekker, New York, pp. 77–124

  5. Dilip CS, Thangaraj V, Raj AP (2016) Synthesis, spectroscopic characterisation, biological and DNA cleavage properties of complexes of nicotinamide. Arab J Chem 9:S731–S742. https://doi.org/10.1016/j.arabjc.2011.07.016

    Article  CAS  Google Scholar 

  6. Vaskova Z, Kitanovski N, Jaglicic Z, Strauch P, Ruzickova Z, Valigura D, Koman M, Kozlevcar B, Moncol J (2014) Synthesis and magneto-structural characterization of copper (II) nitrobenzoate complexes containing nicotinamide or methylnicotinamide ligands. Polyhedron 81:555–563. https://doi.org/10.1016/j.poly.2014.07.017

    Article  CAS  Google Scholar 

  7. Ma Z, Moulton B (2007) Mixed-ligand coordination species: A promising approach for “second generation” drug development. Crystal Growth Design 7(2):196–198

    Article  CAS  Google Scholar 

  8. Abraha A, Gholap A, Belay A (2016) Investigation of self-association, optical transition probability and hetero-association with chlorogenic acid of nicotinamide using UV-Vis spectroscopy. Int J Phys Sci 11(21):269–278. https://doi.org/10.5897/ijps2016.4550

    Article  CAS  Google Scholar 

  9. Rolfe HM (2014) A review of nicotinamide: treatment of skin diseases and potential side effects. J Cosmet Dermatol 13(4):324–328

    Article  PubMed  Google Scholar 

  10. Jackson TM, Rawling JM, Roebuck BD, Kirkland JB (1995) Large supplements of nicotinic acid and nicotinamide increase tissue NAD+ and poly(ADP-ribose) levels but do not affect diethylnitrosamine induced altered hepatic foci in Fischer-344 rats. J Nutr 125:1455–1461. https://doi.org/10.1093/jn/125.6.1455

    Article  CAS  PubMed  Google Scholar 

  11. Krishnamachari KAVR (1974) Some aspects of copper metabolism in pellagra. Clin Nutri 27:108–111

    CAS  Google Scholar 

  12. Tella AC, Owalude SO, Mehlana G, Olatunji SJ, Adetitun DO, Kolawole MO, Simon N, Alimi LO (2017) Synthesis, thermal properties, and biological study of metal(II) nicotinamide complexes containing fumarate dianion and fumaric acid: Crystal structure of Ni(H2O)4(nia)2](fum)·(H2fum). Inorg Nano-Met Chem 47(6):859–864. https://doi.org/10.1080/15533174.2016.1212234

    Article  CAS  Google Scholar 

  13. Kose DA, Ay AN, Sahin O, Buyukgungor O (2012) A mononuclear, mixed (salicylato) (nicotinamide) complex of Zn(II) with penta- and hexa-coordination sites: a novel framework structure. J Iranian Chem Soc 9(4):591–597. https://doi.org/10.1007/s13738-012-0072-9

    Article  CAS  Google Scholar 

  14. Kulaczkowska AD, Mazur L, Ferenc W (2009) Thermal, spectroscopic and structural studies of zinc(II) complex with nicotinamide. J Therm Anal Calorim 96(1):255–260. https://doi.org/10.1007/s10973-008-9851-z

    Article  CAS  Google Scholar 

  15. Kose DA, Ozturk B, Sahin O, Buyukgungor O (2014) Mixed ligand complexes of coumarilic acid/nicotinamide with transition metal complexes Synthesis and structural investigation. J Therm Anal Calorim 115:1515–1524. https://doi.org/10.1007/s10973-013-3415-6

    Article  CAS  Google Scholar 

  16. Takac MJM, Topic DV (2004) FT-IR and NMR spectroscopic studies of salicylic acid derivatives. II. Comparison of 2-hydroxy- and 2,4- and 2,5-dihydroxy derivatives. Acta Pharm 54:177–191

    Google Scholar 

  17. Graminha AE, Popolin C, de Araujo-Neto JH, Correa RS, de Oliveira KM, Godoy LR, Vegas LC, Ellena J, Batista AA, Cominetti MR (2022) New ruthenium complexes containing salicylic acid and derivatives induce triple-negative tumor cell death via the intrinsic apoptotic pathway. Eur J Med Chem 243:114772. https://doi.org/10.1016/j.ejmech.2022.114772

    Article  CAS  PubMed  Google Scholar 

  18. Icbudak H, Heren Z, Kose DA, Necefoglu H (2004) bis(Nicotinamide) and bis(N, N-diethyl nicotinamide) p-hydroxybenzoate complexes of Ni(II), Cu(II) and Zn(II) spectrothermal studies. J Thermal Anal Calorimet 76:837–851. https://doi.org/10.1023/b:jtan.0000032269.12381.42

    Article  CAS  Google Scholar 

  19. Baig RBN, Vaddula BR, Nadagouda MN, Varma RS (2015) The copper–nicotinamide complex: sustainable applications in coupling and cycloaddition reactions. Green Chem. 17:1243–1248. https://doi.org/10.1039/c4gc020476

    Article  CAS  Google Scholar 

  20. Lukin S, Germann LS, Friscic T, Halasz I (2022) Toward mechanistic understanding of mechanochemical reactions using real-time in situ monitoring. Acc Chem Res 55(9):1262–1277. https://doi.org/10.1021/acs.accounts.2c00062

    Article  CAS  PubMed  Google Scholar 

  21. Delori A, Friscic T, Jones W (2012) The role of mechanochemistry and supramolecular design in the development of pharmaceutical materials. CrystEngComm 14(7):2350–2362. https://doi.org/10.1039/c2ce06582g

    Article  CAS  Google Scholar 

  22. Tasner M, Sermek DM, Hajdarpasic E, Calogovic DM (2018) Dinuclear copper(II) acetate complex with caffeine a fast mechanochemical synthesis. Contrib Sect Nat Math Biotech Sci 39(2):91–101. https://doi.org/10.20903/csnmbs.masa.2018.39.2.122

    Article  CAS  Google Scholar 

  23. Utami D, Nugrahani I, Ibrahim S (2016) Formulation and characterization of mefanamic acid-nicotinamide cocrystal during co-milling based on X-ray powder diffraction. J Appl Pharm Sci 6(10):075–081. https://doi.org/10.7324/japs.2016.601010

    Article  CAS  Google Scholar 

  24. Shewale S, Shete AS, Doijad RC, Kadam SS, Patil VA, Yadav AV (2015) Formulation and solid-state characterization of nicotinamide-based co-crystals of fenofibrate. Ind J Pharm Sci 77(3):328–334. https://doi.org/10.4103/0250-474X.159669

    Article  CAS  Google Scholar 

  25. Braga D, Grepioni F, Lampronti GI, Maini L, Turrina A (2011) Ionic co-crystals of organic molecules with metal halides: a new prospect in the solid formulation of active pharmaceutical ingredients. Cryst Growth Des 11:5621–5627. https://doi.org/10.1021/cg201177p

    Article  CAS  Google Scholar 

  26. Seo T, Ishiyama T, Kubota K, Ito H (2019) Solid-state Suzuki-Miyaura cross-coupling reactions: olefin-accelerated C-C coupling using mechanochemistry. Chem Sci 10:8202–8210. https://doi.org/10.1039/c9sc02185j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tella AC, Oladipo AC, Adeyemi OG, Oluwafemi OS, Oguntoye SO, Alimi LO, Ajayi JT, Degni SK (2017) Solid-state synthesis, spectroscopic and vapochromic behavior of [Co(Pic)2(H2O)2].2H2O. Solid State Sciences 68:1–19. https://doi.org/10.1016/j.solidstatesciences.2017.03.017

    Article  CAS  Google Scholar 

  28. Tella AC, Eke UB, Owalude SO (2016) Solvent-free mechanochemical synthesis and X-ray studies of Cu(II) and Ni(II) complexes of 5-(3,4,5-Trimethoxybenzyl)pyridine-2,4-diamine (Trimethoprim) in a ball-mill. J Saudi Chem Soc 20:S376–S381. https://doi.org/10.1016/j.jscs.2012.12.013

    Article  CAS  Google Scholar 

  29. Tella AC, Ameen OA, Ajibade PA, Alimi LO (2015) Template metal-organic frameworks: solvent-free synthesis, characterization and powder X-ray diffraction studies of [Cu(NO3)2(bipy)2](py)2. J Porous Mater 22(6):1599–1605. https://doi.org/10.1007/s10934-015-0043-5

    Article  CAS  Google Scholar 

  30. Tella AC, Eke UB, Isaac AY, Ojekanmi CA (2011) Mechanically-induced solvent-less synthesis of cobalt and nickel complexes of cimetidine. Orbit Electron J Chem Campo Grande 3(2):94–103. https://doi.org/10.17807/orbital.v3i2.213

    Article  CAS  Google Scholar 

  31. Necefoglu H, Hokelek T, Ersanli CC (2002) Erdonmez A (2002) Bis(4-hydroxybenzoato-κO)bis(nicotinamide-κN)zinc(II). Acta Cryst E58:m758–m761. https://doi.org/10.1107/S1600536802021712

    Article  CAS  Google Scholar 

  32. Nwokeke UG, Ibe JC, Enedoh M, Ugariogu SN (2022) Synthesis and characterization of mixed complexes of Co(II) and Fe(II). Int J Sci Res (IJSR) 11(1):968–978

    Google Scholar 

  33. Mitragotri S, Lahann J (2009) Physical approaches to biomaterial design. Nat Mater 8:15–23. https://doi.org/10.1038/nmat2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Tech Adv Mat 16(2):023501. https://doi.org/10.1088/1468.6996/16/2/023501

    Article  Google Scholar 

  35. Nakamoto K (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, Toronto

    Google Scholar 

  36. Latif S, Saheed M, Imran M, Javaid A, Hira U, Mitu L (2022) Synthesis, characterization, and photocatalytic activity of mixed-ligand cerium (III) and bismuth (III) complexes. Hindawi J Chem 2022:1–12. https://doi.org/10.1155/2022/6849793

    Article  CAS  Google Scholar 

  37. Hokelek T, Necefoglu H (2001) Crystal structure of [Triaqua(salicylato)(nicotinamide)zinc(II)] salicylate. Analytical Sci 17:1241–1242. https://doi.org/10.2116/analsci.17.1241

    Article  CAS  Google Scholar 

  38. Iravani E, Nami N, Nabizadeh F, Bayani E, Neumuller B (2013) Synthesis and structures of two lanthanide complexes containing a mixed ligand system: [Ln(Phen)2(L)3(HL)]·H2O [Ln = La, Ce; Phen = Phenanthroline; HL = Salicylic Acid]. Bull Korean Chem Soc 34(11):3420–3424. https://doi.org/10.5012/bkcs.2013.34.11.3420

    Article  CAS  Google Scholar 

  39. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (2004) Advanced Inorganic Chemistry. Wiley, New Delhi

    Google Scholar 

  40. Akinyele OF, Fakola EG, Olasunkanmi OO, George RC, Durosinmi LM, Ayeni AO, Ajayeoba TA (2023) Synthesis, Characterization, Antibacterial Activity and Molecular Docking of Mixed Ligand Complexes of Nicotinamide and Isoniazid. Chem Afr. https://doi.org/10.1007/s42250-023-00701-8

    Article  Google Scholar 

  41. Smith NA, Zhang P, Salassa L, Habtemariam A, Sadler PJ (2017) Synthesis, characterisation and dynamic behavior of photoactive bipyridyl ruthenium(II)-nicotinamide complexes. Inorg Chim Acta 424:240–246. https://doi.org/10.1016/j.ica.2016.06.014

    Article  CAS  Google Scholar 

  42. Elbagerma MA, Edwards HG, Alajtal AI, Scowen IJ (2017) Synthesis, Raman spectroscopy, X-ray and DSC studies of salicylic acid cocrystals prepared by slow evaporation. AASCIT J Chem 3(6):57–65

    Google Scholar 

  43. Ghosh D, Lebedyte I, Yufit DS, Damodaran KK, Steed JW (2015) Selective gelation of N-(4-pyridyl)nicotinamide by copper (II) salts. CrystEngComm 42:8130–8138. https://doi.org/10.1039/c5CE00901d

    Article  Google Scholar 

  44. Handayani NC, Risandiansyah R, Safitri A, Purnomo Y, Prananto YP (2023) Synthesis, characterization, and antibacterial activity of anion-depended Cu(II)-niacinamide complexes. Kuwait J Sci 50:47–52. https://doi.org/10.1016/j.kjs.2023.02.008

    Article  Google Scholar 

Download references

Acknowledgement

We are indeed grateful to the Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg, South Africa for the equipment and the laboratory space made available for this work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel K. Obiyenwa.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obiyenwa, G.K., Tella, A.C., Okwoli, S.O. et al. Solid State Synthesis, Spectroscopic, X-ray and Antibacterial Studies of Zn(II) and Fe(III) Complexes of Pyridine-3-Carboxamide and 2-Hydroxybenzoic Acid. Chemistry Africa 7, 2017–2027 (2024). https://doi.org/10.1007/s42250-023-00867-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00867-1

Keywords

Navigation