Skip to main content
Log in

Structural and Electric Properties of Lanthanide Doped Oxybritholites Materials

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Oxyapatites are very attractive substances thanks to their high ionic conductivity. These materials could be used in place of yttrium-stabilized zirconia (YSZ), enabling electrical conduction in solid fuel cells at temperatures below 1000 °C. In this paper, a series of Sr10-xLax(PO4)6-x(SiO4)xO with x = 0, 2, 4 and 6 were successfully synthesized using a mechanochemical synthesis method. The resulting powders were then sintered at 1200 °C to improve their crystallinity. The obtained materials were well studied and their characterization revealed that a single-phase apatite was produced and that after calcination, the preference of La3+ ions for Me (1) sites shifted to Me (2) sites. The ionic conductivity of raw and calcined materials was studied over a temperature range from 450 to 800 °C. The results showed that the highest value, for apatite, was 1.5%. The results showed that the highest value, 4.179 × 10–5 S.cm−1, was reached with x = 2 at 800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of Data and Materials

The research data associated with a paper is available.

References

  1. El Ouenzerfi R, Goutaudier C, Panczer G, Moine B, Cohen-Adad MT, Trabelsi-Ayedi M, Kbir-Ariguib N (2003) Investigation of the CaO–La2O3–SiO2–P2O5 quaternary diagram. synthesis, existence domain, and characterization of apatitic phosphosilicates. J Solid State Ionics 156:209

    Article  Google Scholar 

  2. Felsche J (1972) Rare earth silicates with the apatite structure. J Solid State Chem 5:266

    Article  CAS  Google Scholar 

  3. Boughzala K, Hidouri M, Ben Salem E, Ben CA, Bouzouita K (2007) Insertion du césium dans des britholites au strontium C. R Chimie 26:483

    Google Scholar 

  4. Boughzala K, Gmati N, Bouzouita K, Cherifa AB, Gravereau P (2010) Structural study of caesium-based britholites Sr7La2Cs(PO4)5(SiO4)F2. C R Chim 13:1377

    Article  CAS  Google Scholar 

  5. Carpena J (1995) V. Sère, From the natural to the synthetic analogue: interest of Oklo for the synthesis of stable crystalline matrices. Proceeding fourth joint EC-CEA final meeting, Saclay, p 225

  6. Carpéna J, Kiénast JR, Ouzegane K, Jehanno C (1988) Evidence of the contrasted fission-track clock behavior of the apatites from in Ouzzal carbonatites (northwest Hoggar): the low-temperature thermal history of an Archean basement. Geol Soc Amer Bull 100:1237

    Article  Google Scholar 

  7. Meis C, Gale JD, Boyer L, Carpena J, Gosset D (2000) Theoretical study of Pu and Cs incorporation in a mono-silicate neodymium fluoroapatite Ca9Nd(SiO4)(PO4)5F2. J Phys Chem 104:5380

    Article  CAS  Google Scholar 

  8. Mendonça C, Ferreira A, Santos DMF (2021) Towards the commercialization of solid oxide fuel cells: recent advances in materials and integration strategies. Fuels 2(4):393

    Article  Google Scholar 

  9. Sansom JEH, Kendrick E, Tolchard JR, Islam MS, Slater PR (2006) A Comparison of the effect of rare earth vs si site doping on the conductivities of apatite-type rare earth silicates. J Solid State Electrochem 10:562

    Article  CAS  Google Scholar 

  10. Dacheux N, Du Fou E, de Kerdaniel N, Clavier R, Podor J, Aupiais SS (2010) Kinetics of dissolution of thorium and uranium doped britholite ceramics. J Nucl Mater 404:33

    Article  CAS  Google Scholar 

  11. Naanaai L, Azzaoui K, Lamhamdi A, Mejdoubi E, Lakrat M, Jodeh S (2020) Study and optimization of oxygenated apatite obtained by dissolution-reprecipitation of hydroxyapatite in a solution of hydrogen peroxide. Chem Africa 3:227–235

    Article  CAS  Google Scholar 

  12. Khapre MA, Jugade RM (2021) Tetrabutylammonium impregnated chitosan for adsorptive removal of harmful carcinogenic dyes from water-bodies. Chem Africa 4:993–1005

    Article  CAS  Google Scholar 

  13. Vanpeene M, Rajesh R, Dominic Ravichandran Y, Kuo YC, Gure G (2023) Biomimetic graphene oxide-xanthan gum-hydroxyapatite composite scafold for bone tissue engineering. Chem Afr 6:145–152

    Article  CAS  Google Scholar 

  14. Benjamin JS (1970) Dispersion strengthened superalloys by mechanical alloying. Metall Trans 1:2943

    Article  CAS  Google Scholar 

  15. Nikčević I, Jokanović V, Nedić Z, Makovec D, Uskoković D (2004) echanochemical synthesis of nanostructured fluorapatite/fluorhydroxyapatite and carbonated fluorapatite /fluorhydroxyapatite. J Solid State Chem 177:2565

    Article  Google Scholar 

  16. Sudarsanan K, Makie PE, Young RA (1972) Comparaison of synthesis and mineral fluorapatite Ca5(PO4)3F, in crystallographie detail. Mater Res Bull 7:1331

    Article  CAS  Google Scholar 

  17. Fleet ME, Pan Y (1994) Site preference of Nd in fluorapatite [Ca10(PO4)6F2]. J Solid State Chem 111:78

    Article  Google Scholar 

  18. Boyer L, Carpena J, Lacout J (1997) Synthesis of phosphatesilicate apatites at atmospheric pressure. Solid State Ionics 95:121

    Article  CAS  Google Scholar 

  19. Boughzala K, Ben Salem E, Ben Chrifa A, Gaudin E, Bouzouita K (2007) Synthesis and characterization of strontium-lanthanum apatites. Mater Res Bull 42:1221

    Article  CAS  Google Scholar 

  20. Boughzala K, Bouzouita K (2015) Synthesis and characterization of strontium–calcium–lanthanum apatites Sr7-xCaxLa3(PO4)3(SiO4)3F2 0 < x < 2. C R Chim 18:858

    Article  CAS  Google Scholar 

  21. Gmati N, Boughzala K, Abdellaoui M, Bouzouita K (2011) Mechanochemical synthesis of strontium britholites: reaction mechanism C. R Chim 14:896

    Article  CAS  Google Scholar 

  22. Gmati N, Boughzala K, Chabene A, Fattah N, Bouzouita K (2013) Mechanochemical synthesis of strontium apatites doped with lanthanum and cesium. C R Chim 16:712

    Article  CAS  Google Scholar 

  23. Sboui N, Agougui H, Jabli M, Boughzala K (2022) Synthesis, physico-chemical, and structural properties of silicate apatites: Effect of synthetic methods on apatite structure and dye removal Inorg. Chem Commun 142:109628

    CAS  Google Scholar 

  24. Bembli M, Agougui H, Jabli M, Boughzala K (2022) Mechanochemical synthesis of strontium oxybritholites (Sr10-xLax(PO4)6–x(SiO4)xO): Characterization, structural refinement, and adsorption characteristics toward Basic Blue 41 Inorg. Chem Commun 145:109957

    CAS  Google Scholar 

  25. Panteix PJ, Julien I, Bernache-Assollant D, Abelard P (2006) Synthesis and characterisation of oxide ions conductors with the apatite structure for intermediate temperature SOFC. J Mater Chem Phys 95:313

    Article  CAS  Google Scholar 

  26. Abdellaoui M, Gaffet EA (1994) Mathematical and experimental dynamical phase diagram for ball-milled Ni10Zr7. J Alloys Compd 209:351

    Article  CAS  Google Scholar 

  27. Abdellaoui M, Gaffet E (1995) The physics of mechanical alloying in a planetary ball mill: mathematical treatment. Acta Metall Mater 433:1087

    Article  Google Scholar 

  28. Gee A, Deitz VR (1953) Determination of phosphates by differential spectrometric. Anal Hem 25:1320

    CAS  Google Scholar 

  29. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65

    Article  CAS  Google Scholar 

  30. Boughzala K, Nasr S, Ben Salem E, Kooli F, Bouzouita K (2009) Structural and spectroscopic investigation of lanthanum substituted strontium-oxybritholites. J Chem Sci 121:283

    Article  CAS  Google Scholar 

  31. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751

    Article  Google Scholar 

  32. Zhu K, Yanagisawa K, Shimanouchi R, Onda A, Kajiyoshi K (2006) Preferential occupancy of metal ions in the hydroxyapatite solid solutions synthesized by hydrothermal method. J Eur Ceram Soc 26:509

    Article  CAS  Google Scholar 

  33. Machie PE, Young RA (1973) Location of Nd dopant in fluorapatite, Ca5(PO4)3F: Nd. J Appl Crystallogr 6:26

    Article  Google Scholar 

  34. Chen N, Pan YA, Weil JA, Nilges MJ (2002) Electron paramagnetic resonance spectroscopic study of synthetic fluorapatite: Part II Gd3+ at the Ca1 site, with a eighboring Ca2 vacancy. Amer Min 87:47

    Article  CAS  Google Scholar 

  35. Schroeder LW, Mathew M (1978) Cation ordering in [Ca.sub.2] [La.sub.8] [([SiO.sub.4]).sub.6][O.sub.2]. J Solid State Chem 26:383

    Article  CAS  Google Scholar 

  36. Tonsuaadu K, Gross KA, Plu duma, L., Veiderma, M. (2012) A review on the thermal stability of calcium apatites. J Therm Anal Calorim 110:647

    Article  CAS  Google Scholar 

  37. Scherrer P (1912) Bestimmung Der Inneren Struktur Und Der Größe von Kolloidteil chen Mittels Röntgenstrahlen, dans Kolloidchemie Ein Lehrbuch. Springer, Berlin, Heidelberg, p 387

    Google Scholar 

  38. Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22

    Article  CAS  Google Scholar 

  39. Halder NC, Wagner CNJ (1966) Separation of particle size and lattice strain in integral breadth measurements. Acta Crystallogr 20:312

    Article  CAS  Google Scholar 

  40. Marinkovic B, de Avillez RR, Saavedra A, Assunção FCR (2001) A Comparison between the Warren-Averbach method and alternate methods for X-Ray diffraction microstructure analysis of polycrystalline specimens. Mater Res 4(2):71–76

    Article  CAS  Google Scholar 

  41. Muniz FTL, Miranda MAR, Morilla Dos Santos C, Sasaki JM (2016) The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr Sect A Found Adv A72(385):390

    Google Scholar 

  42. Manka A, Pathak H, Tanimura S, Wölk J, Strey R (2012) Wyslouzil freezing water in no-man’s land. Chem Chem Phys 14:4505

    Article  CAS  Google Scholar 

  43. Goldman A (1993) Modern ferrite technology. Marcel Dekker, New York

    Google Scholar 

  44. Vekilov PG (2010) The two-step mechanism of nucleation of crystals in solution. Nanoscale 2:2346

    Article  CAS  PubMed  Google Scholar 

  45. Slama C, Mohieddine A, Boulaares MD (2016) Microstructure characterization of nanocrystalline (Ti0.9W0.1) C prepared by mechanical alloying. Int J Refract Metals Hard Mater 54:270

    Article  CAS  Google Scholar 

  46. Prabhu YT, Rao KV, Kumar VS, Kumari BS (2014) X-ray analysis by williamson-hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J Nano Sci Eng 4:21

    Article  CAS  Google Scholar 

  47. Chicot D, Mendoza J, Zaoui A, Louis G, Lepingle V, Roudet F, Lesage J (2011) Mechanical properties of magnetite (Fe3O4), hematite (α-Fe2O3) and goethite (α-FeO·OH) by instrumented indentation and molecular dynamics analysis Mater. Chem Phys 129:862

    CAS  Google Scholar 

  48. Kthiri K, Mehnaoui M, Boughzala K, Hidouri M (2022) Structural and electric properties of strontium fuorbritholites containing gadolinium and neodymium. Appl Phys A 128:678

    Article  CAS  Google Scholar 

  49. Lafon JP, Champion E, Bernache-Assollant D (2008) Processing of AB-type carbonated hydroxyapatite Ca10−x(PO4)6–x(CO3)x(OH)2–x−2y(CO3)y ceramics with controlled composition. J Eur Ceram Soc 28:139

    Article  CAS  Google Scholar 

  50. Fowler BO (1974) Infrared studies of apatites I vibrational assignments for calcium strontium and barium hydroxyapa tite utilizing isotopic substitution. Inorg Chem 13(1):194

    Article  CAS  Google Scholar 

  51. Khorari S, Cahay R, Rulmont A, tarte, P. (1994) The coupled iso morphic substitution 2(SO4)3−→(SO4)2− +(SiO4)4− in synthetic apatite Ca10(PO4)6F2: a study by X-ray diffraction and vibrational spectroscopy. Eur J Solid State Inorg Chem 31:921

    CAS  Google Scholar 

  52. Kharlamova T, Pavlova S, Sadykov V, Lapina O, Khabibulin D, Krieger T, Zaikovskii V, Ishchenko A, Salanov A, Muzykantov V, Mezentseva N, Chaikina M, Uvarov N, Frade J, Argirusis C (2008) Low-temperature synthesis and characterization of apatite-type lanthanum silicates. Solid State Ion 179:1018

    Article  CAS  Google Scholar 

  53. Béchade E, Julien I, Iwata T, Masson O, Thomas P, Champion E, Fukuda K (2008) Synthesis of lanthanum silicate oxyapatite materials as a solid oxide fuel cell electrolyte. J Eur Ceram Soc 28:2717

    Article  Google Scholar 

  54. Fleet ME, Liu X, Pan Y (2000) Site preference of rare earth elements in hydroxyapatite [Ca10(PO4)6(OH)2]. J Solid State Chem 149:391

    Article  CAS  Google Scholar 

  55. Boughzala K, Ben Salem E, Kooli F, Gravereau P, Bouzouita K (2008) Spectroscopic studies and Rietveld refinement of strontium-britholites. J Rare Earths 26:483

    Article  Google Scholar 

  56. Njema H, Boughzala K, Boughzala H, Bouzouita K (2013) Structural analysis by Rietveld refinement of calcium and lanthanum phosphosilicate apatites. J Rare Earths 31:897

    Article  CAS  Google Scholar 

  57. Kohn MJ, Rakovan JR, Hughes JM (2002) Phosphates: Geochemical, Geobiolgical, and Materials Importance, Reviews in Mineralogy & Geochemistry, Vol. 48 The Mineralogical Society of America

  58. Boughzala K, Debbichi M, Njema H, Bouzouita K (2016) Rietveld refifinement, electronic structure and ionic conductivity of Sr4La6(SiO4)6F2 and Sr4La6(SiO4)6O ceramics. J Solid State Chem 239:84

    Article  CAS  Google Scholar 

  59. Gmati N, Boughzala K, Ben SE, Chabene A, Fattah N, Bouzouita K (2014) Mechanochemical synthesis and ionic conductivity of lanthanum phosphosilicate oxyapatites. C R Chim 17:920

    Article  CAS  Google Scholar 

  60. Guo-Cao X, Ping-Jiang S (2012) Sinterability and conductivity of barium doped aluminium lanthanum oxyapatite La9.5Ba0.5Si5.5Al0.5O26.5 electrolyte of solid oxide fuel cells. J Alloy Compd 523:127

    Article  Google Scholar 

  61. Panteix PJ, Béchade E, Julien I, Abélard P, Bernache-Assollant D (2008) Influence of anionic vacancies on the ionic conductivity of silicated rare earth apatites. Mater Res Bull 43:1223

    Article  CAS  Google Scholar 

  62. Hughes JM, Cameron M, Crowley KD (1989) Structural variations in natural F, OH, and Cl apatites. Am Miner 74:870–876

    CAS  Google Scholar 

  63. Njema H, Boughzala K, Chaabène A, Bouzouita K (2014) Study of the ionic conductivity of Ca6La4(PO4)2(SiO4)4F2 and Ca4La6(SiO4)6F2 C. R Chim 17:1237

    Article  CAS  Google Scholar 

  64. Naddari T, El Feki H, Savariault JM, Salles P, Ben SA (2003) Structure and ionic conductivity of the lacunary apatite. Solid State Ion 158:157

    Article  CAS  Google Scholar 

  65. Laghzizil A, Bouhaouss A, Ferhat M, Barboux P, Morineau R (1994) Livage anionic conductivity in fluorapatites: correlation between structure and electrical properties. J Adv Mater Res 1–2:479

    Article  Google Scholar 

  66. Léon-Reina L, Porras-Vázquez JM, Losilla ER, Aranda MAG (2007) Phase transition and mixed oxide-proton conductivity in germanium oxy-apatites. J Solid State Chem 180:1250

    Article  Google Scholar 

  67. Laghzizil A, El Herch N, Bouhaouss A, Lorente G, Macquete J (2001) Comparison of electrical properties between fluoroapatite and hydroxyapatite materials. J Solid State Chem 156:57

    Article  CAS  Google Scholar 

  68. Souamti A, Kahlaoui M, Mohammed BM, Lozano-Gorrín AD, Chehimi BH, D. (2017) Synthesis, structural and electrochemical properties of new ytterbium-doped langbeinite ceramics. Ceram Int 43(14):10939–10947

    Article  CAS  Google Scholar 

  69. Souamti A, Chehimi BH, D. (2021) Effects of Gd2O3 doping on the structure and the conduction mechanism of K2Mg2(SO4)3 langbeinite ceramics: a comparative study. Mater Sci Eng, B 265:115040

    Article  CAS  Google Scholar 

  70. Souemti A, Labidi I, Megriche A (2022) Spectroscopic properties and conduction mechanism of KAl(SO4)2:xSm: a multifunctional materials for optical and electrochemical applications. Ceram Int 48(15):21552–21560

    Article  CAS  Google Scholar 

  71. Souamti A, Kahlaoui M, Martín IR, Lozano-Gorrín AD, Lalla E, Chehimi BH, D. (2019) Synthesis, luminescence, and electrical properties of Na6Mg(SO4)4:xEu vanthoffite ceramics as electrode materials for sodium ion batteries. Mater Sci Eng, B 247:114384

    Article  CAS  Google Scholar 

Download references

Funding

No funding is available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Boughzala.

Ethics declarations

Conflict of Interest

This article's authors declare that they do not have any potential conflict of interest related to the research, the authors' involvement, and/or the publication.

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bembli, M., Khiari, R., Hidouri, M. et al. Structural and Electric Properties of Lanthanide Doped Oxybritholites Materials. Chemistry Africa 7, 2235–2252 (2024). https://doi.org/10.1007/s42250-023-00855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00855-5

Keywords

Navigation