Skip to main content
Log in

Evaluation of Poly (Vinyl Chloride)/2-Nitrophenyl Octyl Ether/Di(2-Ethylhexyl) Phosphoric Acid Polymer Inclusion Membrane Performance for Zinc Recovery and Separation

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Membrane technology, based on a different kind of polymeric membranes, is among the most recognized and crucial technologies for the treatment of wastewater. Polymer Inclusion Membranes (PIMs) were used in selective and facilitated transport of different heavy metals from acidic media. The motivation of this study is to synthesize novel PVC-based polymer inclusion membranes (PIMs) with specific percentages of plasticizer and carrier to transport and separate Zn(II) ions under particular conditions. In the synthesis of these membranes, the efforts are directed towards minimizing the quantities of organic solvents employed as plasticizing and carrier agents. This reduction not only contributes to environmental sustainability but also enhances health and economic aspects. These findings align with the ongoing commitment to advancing environmentally conscious practices in membrane synthesis. Polymer inclusion membranes consisting of poly (vinyl chloride) (PVC) as base polymer, 2-nitrophenyl octyl ether (NPOE) as a plasticizer (10 wt. %), and D2EHPA as a carrier (30 wt. %) were prepared. The membranes were characterized by attenuated total reflectance-fourier transformed infrared (ATR-FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) to collect information on their morphology and composition. Mechanical properties and hydrophobicity of the PIMs were determined by the tensile strength and the contact angle measurements. To further verify the feasibility of the new composition of the membranes, the PVC/NPOE/D2EHPA PIM was used to evaluate the effect of the pH of the feed phase on zinc transport ([Zn2+] = 30 mg.L−1, pH range varied from 2 to 5). At optimal pH equal to 5, zinc ions were completely transported through the selected PIM after only 4 h by using 1 M of sulfuric acid as a receiving phase. The stability of the studied PIM was also examined. We note that Zn(II) flux through this membrane decreases slightly after six extraction cycles. Moreover, the selectivity coefficient revealed that the PIM is more selective towards Zn(II) than Ni(II) cations. The performances of the PIM system for zinc, nickel and copper separation were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data cited in the article are available from the corresponding author on reasonable request.

Abbreviations

ATR-FTIR:

Attenuated total reflectance-Fourier transformed infrared

CTA:

Cellulose triacetate

D2EHPA:

Di(2-ethylhexyl) phosphoric acid

DBE:

Dibenzyl ether

EDTA:

Ethylenediaminetetraacetic acid

FTIR:

Fourier Transform Infrared

NPOE:

2-Nitrophenyl octyl ether

OHA:

Octylhydroxamic acid

o-NPPE:

O-nitrophenyl pentyl ether

PIM:

Polymer Inclusion Membrane

PVC:

Poly (vinyl chloride)

PVDF:

Polyvinylidene difluoride

RILs:

Reactive ionic liquids

RO:

Reverse osmosis

SEM:

Scanning electron microscopy

SLM:

Supported liquid membrane

TGA:

Thermogravimetric analysis

References

  1. Taghipour M, Jalali M (2019) Ecotoxicol Environ Saf 182:109347

    Article  CAS  PubMed  Google Scholar 

  2. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair M, Sadeghi M (2021) Front Pharmacol 12:643972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS (2018) Environ Nanotechnol Monit Manag 9:76–84

    Google Scholar 

  4. Abdullah N, Yusof N, Lau WJ, Jaafar J, Ismail AF (2019) J Ind Eng Chem 76:17–38

    Article  CAS  Google Scholar 

  5. Kumar V, Dwivedi SK (2021) J Clean Prod 295:126229

    Article  CAS  Google Scholar 

  6. El Batouti M, Al-Harby NF, Elewa MM (2021) Water 13:3241

    Article  Google Scholar 

  7. Xiang H, Min X, Tang C-J, Sillanpää M, Zhao F (2022) J Water Process Eng 49:103023

    Article  Google Scholar 

  8. Maiphetlho K, Chimuka L, Tutu H, Richards H (2021) Sci Total Environ 799:149483

    Article  CAS  PubMed  Google Scholar 

  9. Ocaña-González JA, Aranda-Merino N, Pérez-Bernal JL, Ramos-Payán M (2023) J Chromatogr 1691:463825

    Article  Google Scholar 

  10. Basaran G, Kavak D, Dizge N, Asci Y, Solener M, Ozbey B (2016) Desalination. Water Treat 57:21870–21880

    Article  CAS  Google Scholar 

  11. Ennigrou DJ, Ali MBS, Dhahbi M, Mokhtar F (2014) Membr. Water Treat 5:183–195

    Article  Google Scholar 

  12. Hosseini SS, Khodakarami AH, Nxumalo EN (2020) Polym Eng Sci 60:1795–1811

    Article  CAS  Google Scholar 

  13. Hosseini SS, Nazif A, Alaei Shahmirzadi MA, Ortiz I (2017) Sep Purif Technol 187:46–59

    Article  CAS  Google Scholar 

  14. Lech M, Gala O, Helińska K, Kołodzińska K, Konczak H, Mroczyński Ł, Siarka E (2023) Waste 1:482–496

    Article  Google Scholar 

  15. Fradler KR, Michie I, Dinsdale RM, Guwy AJ, Premier GC (2014) Water Res 55:115–125

    Article  CAS  PubMed  Google Scholar 

  16. Almeida M, Cattrall RW, Kolev SD (2012) J Membr Sci 415–416:9–23

    Article  Google Scholar 

  17. Kebiche-Senhadji O, Mansouri L, Tingry S, Seta P, Benamor M (2008) J Membr Sci 310:438–445

    Article  CAS  Google Scholar 

  18. Ncib S, Barhoumi A, Bouguerra W, Larchet C, Dammak L, Hamrouni B, Elaloui E (2018) Desalin Water Treatm 104:263–272

    Article  CAS  Google Scholar 

  19. Othmen K, Ncib S, Barhoumi A, Dammak L, Bouguerra W (2021) Desalination. Water Treat 225:422–429

    Article  CAS  Google Scholar 

  20. Almeida M, Cattrall RW, Kolev SD (2017) Anal Chim Acta 987:1–14

    Article  CAS  PubMed  Google Scholar 

  21. Zulkefeli N.S.W., Weng S.K., Abdul Halim N.S., (2018) Curr. Pollut. Rep., 4:84–92.

  22. Zawierucha I, Nowik-Zajac A, Kozlowski C (2019) Polymers 11:2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pyszka I, Radzyminska-Lenarcik E (2020) Membranes 10:385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nowik-Zajac A, Zawierucha I, Kozlowski C (2019) RSC Adv 9:31122–31132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nghiem LD, Mornane P, Potter ID, Perera JM, Cattrall RW, Kolev SD (2006) J Membr Sci 281:7–41

    Article  CAS  Google Scholar 

  26. Huang S, Chen J, Zou D (2021) J Rare Earths 39:1256–1263

    Article  CAS  Google Scholar 

  27. Sgarlata C, Arena G, Longo E, Zhang D, Yang Y, Bartsch RA (2008) J Membr Sci 323:444–451

    Article  CAS  Google Scholar 

  28. Sun C, Zhou C, Zhang D, Shen S (2020) J Chin Chem Soc 67:478–483

    Article  CAS  Google Scholar 

  29. Almeida MI, Cattrall RW, Kolev S (2012) Procedia Eng 44:681–682

    Article  Google Scholar 

  30. Wang D, Cattrall RW, Li J, Almeida M, Stevens GW, Kolev SD (2017) J Membr Sci 542:272–279

    Article  CAS  Google Scholar 

  31. Meng X, Wang C, Ren T, Wang L, Wang X (2018) Chem Eng J 346:506–514

    Article  CAS  Google Scholar 

  32. Hoque B, Almeida M, Cattrall RW, Gopakumar TG, Kolev SD (2019) J Membr Sci 589:117256

    Article  Google Scholar 

  33. Szczepański P, Guo H, Dzieszkowski K, Rafiński Z, Wolan A, Fatyeyeva K, Kujawa J, Kujawski W (2021) J Membr Sci 638:119674

    Article  Google Scholar 

  34. Sellami F, Kebiche-Senhadji O, Marais S, Couvrat N, Fatyeyeva K (2019) React Funct Polym 139:120–132

    Article  CAS  Google Scholar 

  35. Iben NI, El Haj I, Amor F, Donato L, Algieri C, Garofalo A, Drioli E, Ahmed C (2016) Chem Eng J 295:207–217

    Article  Google Scholar 

  36. Parhi P.K., (2013) J. Chem. 2013 https://doi.org/10.1155/2013/618236.

  37. Wang D, Liu J, Chen J, Liu Q, Zeng H (2020) Chem Eng Sci 220:115620

    Article  CAS  Google Scholar 

  38. Lin C, Liu Y, Zhang X, Miao X, Chen Y, Chen S, Zhang Y (2022) J Power Sources 549:232078

    Article  CAS  Google Scholar 

  39. Gyamfi E, Appiah-Adjei EK, Adjei KA (2019) Groundw Sustain Dev 8:450–456

    Article  Google Scholar 

  40. Huang J, Li Y, Xie R, Li J, Tian Z, Chai G, Zhang Y, Lai F, He G, Liu C, Liu T, Brett DJL (2021) J Energy Chem 58:147–155

    Article  CAS  Google Scholar 

  41. Radzyminska-Lenarcik E, Pyszka I, Ulewicz M (2020) Membranes 10:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Smail F, Arous O, Amara M, Kerdjoudj H (2013) Comptes Rendus Chim 16:605–612

    Article  CAS  Google Scholar 

  43. Kolev SD, Baba Y, Cattrall RW, Tasaki T, Pereira N, Perera JM, Stevens GW (2009) Talanta 78:795–799

    Article  CAS  PubMed  Google Scholar 

  44. Makowka A, Pospiech B (2019) Autex Res J 19:288–292

    Article  CAS  Google Scholar 

  45. Fontàs C, Tayeb R, Dhahbi M, Gaudichet E, Thominette F, Roy P, Steenkeste K, Fontaine-Aupart M-P, Tingry S, Tronel-Peyroz E, Seta P (2007) J Membr Sci 290:62–72

    Article  Google Scholar 

  46. Kazemi D, Yaftian MR, Kolev SD (2021) React Funct Polym 164:104935

    Article  CAS  Google Scholar 

  47. Wang D, Hu J, Li Y, Fu M, Liu D, Chen Q (2016) J Membr Sci 501:228–235

    Article  CAS  Google Scholar 

  48. Ncib S., Chibani A., Barhoumi A., Larchet C., Dammak L., Elaloui E., Bouguerra W., (2022) Polym Bull https://doi.org/10.1007/s00289-022-04634-z

  49. Alcalde B, Anticó E, Fontàs C (2021) Appl Sci 11:10404

    Article  CAS  Google Scholar 

  50. Vera R, Fontas C, Galceran J, Serra O, Anticó E (2017) Sci Total Environ 622:316–324

    PubMed  Google Scholar 

  51. Danesi PR (1984) Sep Sci Technol 19:857–894

    Article  CAS  Google Scholar 

  52. Chen L, Dong H, Pan W, Dai J, Dai X, Pan J (2021) Chem Eng J426:131305

    Article  Google Scholar 

  53. Alsalhy Q (2020) Membranes 77:1–22

    Google Scholar 

  54. Meng X, Wang C, Zhou P, Xin X, Wang L (2017) FrontEnviron Sci Eng 11:1–10

    Google Scholar 

  55. Ounissa S, Mansouri L, Benamor M (2015) Int Proc Chem Biol Environ Eng 83:169

    Google Scholar 

  56. Wang D, Liu F, Zhang X, Wu M, Wang F, Liu J, Wang J, Liu Q, Zeng H (2021) J Membr Sci 626:119183

    Article  CAS  Google Scholar 

  57. Liu R, Liu M, Wu S, Che X, Dong J, Yang J (2020) Eur Polym J 137:109948

    Article  CAS  Google Scholar 

  58. Jia P, Zhang M, Hu L, Feng G, Bo C, Zhou Y (2015) ACS Sustain Chem Eng 3:2187–2193

    Article  CAS  Google Scholar 

  59. Soudais Y, Moga L, Blazek J, Lemort F (2007) J Anal Appl Pyrolysis 78:46–57

    Article  CAS  Google Scholar 

  60. Yadav KK, Singh DK, Anitha M, Varshney L, Singh H (2013) Sep Purif Technol 118:350–358

    Article  CAS  Google Scholar 

  61. Sellami .F, Kebiche-Senhadji O., Marais S., Fatyeyeva K., (2022) J Hazard Mater 436:129069.

  62. Yin B, Hakkarainen M (2011) J Appl Polym Sci 119:2400–2407

    Article  CAS  Google Scholar 

  63. Witt K., Radzyminska-Lenarcik E., Kościuszko A., Gierszewska M., Ziuziakowski K., (2018) Polymers 10:https://doi.org/10.3390/polym10020134.

  64. Najafi V, Abdollahi H (2020) Eur Polym J 128:109620

    Article  CAS  Google Scholar 

  65. Li C, Jia Y, Lu X, Chen H (2023) Chemw Eng J 452:139288

    Article  CAS  Google Scholar 

  66. Resina M, Macanás J, de Gyves J, Muñoz M (2006) J Membr Sci 268:57–64

    Article  CAS  Google Scholar 

  67. Kazemi D, Yaftian MR (2022) Sep Purif Technol 285:120375

    Article  CAS  Google Scholar 

  68. Saka C., Kiswandono A.A., Hadi S., Poll. Res. 39:1009–1016.

  69. Zhang LL, Cattrall RW, Kolev SD (2011) Talanta 84:1278–1283

    Article  CAS  PubMed  Google Scholar 

  70. Ershad M, Almeida M, Spassov TG, Cattrall RW, Kolev SD (2018) Sep Purif Technol 195:446–452

    Article  CAS  Google Scholar 

  71. Radzyminska-Lenarcik E, Pyszka I, Urbaniak W (2021) Polymers 13:1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dong Z, He F, Miao Z, Zhang Y (2021) Sep Purif Technol 267:118564

    Article  Google Scholar 

  73. Owusu G (1998) Hydrometallurgy 47:205–215

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The researchers would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H.M., S.N., W.B. and L.A.; methodology, S.N., L.D., and W.B.; validation, W.B., S.A., L.D. and L.A.; formal analysis, H.M., S.N. and K.O.; investigation, L.D., S.A., W.B., S.N. and L.A.; resources, W.B. and L.D.; data curation, H.M., K.O., S.N., W.B. and L.D.; writing—original draft preparation, H.M., K.O. and S.N.; writing—review and editing, S.N., W.B., S.A., L.D. and L.A.; supervision, L.A. and W.B.; project administration, W.B. and L.D.. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Wided Bouguerra.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, H., Ncib, S., Othmen, K. et al. Evaluation of Poly (Vinyl Chloride)/2-Nitrophenyl Octyl Ether/Di(2-Ethylhexyl) Phosphoric Acid Polymer Inclusion Membrane Performance for Zinc Recovery and Separation. Chemistry Africa 7, 2125–2137 (2024). https://doi.org/10.1007/s42250-023-00853-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00853-7

Keywords

Navigation