Skip to main content
Log in

Influence of Shea Butter Residues on the Physico-Mechanical Properties of Earth Renders

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This paper studies the influence of shea butter residues on the physical and mechanical performance of earth renders. Mineralogical and microstructural characteristics of shea butter residues as well as the physical and mechanical parameters of earth renders were evaluated. The results showed that shea butter residues are mainly composed of fatty substances. To enhance physical and mechanical performance of earth renders, contents varying from 0 to 6 wt% of shea butter residues were added to a local clayey soil, predominately composed of kaolinite (60 wt%), quartz (31 wt%) and feeble amount of goethite (2 wt%). This study showed that the incorporation of shea butter residues to earth renders improved meaningfully their physico-mechanical properties such as water and erosion resistance. This is particularly attributable to the hydrophobic properties of fatty substances contained in shea butters. Furthermore, shea butter residues incorporation increases earth renders porosity which contributes to reduce mechanical resistance and thermal conductivity and making the renders more insulating. Taking into account construction standards based on the protection of earth buildings and also their advantageous hydric properties and insulating power, earth renders amended with shea butter could be an adequate and affordable habitat building material throughout tropical regions of the world.

Highlights

Shea butter residues addition to earth renders decreases their linear shrinkage.

Earth renders amended by shea butter residues have good water resistance.

Shea butter residues addition to earth renders decreases their thermal conductivity.

Lipidic molecules in shea butter residues explain these observed improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data may be available in three parts.

References

  1. McGregor F, Mauffré T, Force M-S, Contraires E, Fabbri A (2022) Measurement of the water vapour permeability of earth plasters using small-scale wind tunnels under variable air flow regimes. Mater Struct 55:110. https://doi.org/10.1617/s11527-022-01950-8

    Article  CAS  Google Scholar 

  2. Lagouin M, Aubert J-E, Laborel-Préneron A, Magniont C (2021) Influence of chemical, mineralogical and geotechnical characteristics of soil on earthen plaster properties. Constr Build Mater 304:124339. https://doi.org/10.1016/j.conbuildmat.2021.124339

    Article  CAS  Google Scholar 

  3. Faria P, Santos T, Aubert J-E (2016) Experimental characterization of an Earth Eco-efficient Plastering Mortar. J Mater Civ Eng 28:04015085. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001363

    Article  Google Scholar 

  4. Delinière R, Aubert JE, Rojat F, Gasc-Barbier M (2014) Physical, mineralogical and mechanical characterization of ready-mixed clay plaster. Build Environ 80:11–17. https://doi.org/10.1016/j.buildenv.2014.05.012

    Article  Google Scholar 

  5. Hamard E, Morel J-C, Salgado F, Marcom A, Meunier N (2013) A procedure to assess the suitability of plaster to protect vernacular earthen architecture. J Cult Herit 14:109–115. https://doi.org/10.1016/j.culher.2012.04.005

    Article  Google Scholar 

  6. Morel JC, Aubert JE, Millogo Y, Hamard E, Fabbri A Some observations about the paper “Earth construction: Lessons from the past for future eco-efficient construction” by, Pacheco-Torgal F (2013) and S. Jalali. Constr Build Mater 44:419–421. https://doi.org/10.1016/j.conbuildmat.2013.02.054

  7. Bamogo H, Ouedraogo M, Sanou I, Aubert J-E, Millogo Y (2022) Physical, Hydric, Thermal and Mechanical properties of Earth renders amended with Dolomitic Lime. Materials 15:4014. https://doi.org/10.3390/ma15114014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sathiparan N, Anburuvel A, Selvam VV (2023) Utilization of agro-waste groundnut shell and its derivatives in sustainable construction and building materials – A review. J Build Eng 66:105866. https://doi.org/10.1016/j.jobe.2023.105866

    Article  Google Scholar 

  9. Ouedraogo M, Sawadogo M, Sanou I, Barro M, Nassio S, Seynou M, Zerbo L (2022) Characterization of sugar cane bagasse ash from Burkina Faso for cleaner cement production: influence of calcination temperature and duration. Results Mater 14:100275. https://doi.org/10.1016/j.rinma.2022.100275

    Article  CAS  Google Scholar 

  10. Scrivener KL, John VM, Gartner EM (2018) Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cem Concr Res 114:2–26. https://doi.org/10.1016/j.cemconres.2018.03.015

    Article  CAS  Google Scholar 

  11. Hossain MM, Karim MR, Hossain MK, Islam MN, Zain MFM (2015) Durability of mortar and concrete containing alkali-activated binder with pozzolans: a review. Constr Build Mater 93:95–109. https://doi.org/10.1016/j.conbuildmat.2015.05.094

    Article  Google Scholar 

  12. Savadogo N, Traore YB, Nshimiyimana P, Lankoande N, Messan A (2023) Physico-mechanical and durability characterization of earthen plaster stabilized with fermented rice husk for coating adobe walls. Cogent Eng 10:2243740. https://doi.org/10.1080/23311916.2023.2243740

    Article  Google Scholar 

  13. Jia Q, Chen W, Tong Y, Guo Q (2023) Laboratory study on shrinkage and cracking behavior of historic earthen plaster. Eng Geol 318:107096. https://doi.org/10.1016/j.enggeo.2023.107096

    Article  Google Scholar 

  14. Gallo Stampino P, Riva L, Caruso M, Rahman IA, Elegir G, Bussini D, Marti-Rujas J, Dotelli G, Punta C (2022) Can TEMPO-Oxidized cellulose nanofibers be used as additives in bio-based building materials a preliminary study on Earth Plasters. Materials 16:74. https://doi.org/10.3390/ma16010074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jia Q, Chen W, Tong Y, Guo Q (2022) Strength, hydration, and microstructure properties of calcined ginger nut and natural hydraulic lime based pastes for earthen plaster restoration. Constr Build Mater 323:126606. https://doi.org/10.1016/j.conbuildmat.2022.126606

    Article  CAS  Google Scholar 

  16. Ouedraogo KAJ, Aubert JE, Tribout C, Millogo Y, Escadeillas G (2021) Ovalbumin as natural organic binder for stabilizing unfired earth bricks: understanding vernacular techniques to inspire modern constructions. J Cult Herit 50:139–149. https://doi.org/10.1016/j.culher.2021.05.004

    Article  Google Scholar 

  17. Lagouin M, Laborel-Préneron A, Magniont C, Geoffroy S, Aubert J-E (2021) Effects of organic admixtures on the fresh and mechanical properties of earth-based plasters. J Build Eng 41:102379. https://doi.org/10.1016/j.jobe.2021.102379

    Article  Google Scholar 

  18. Bamogo H, Ouedraogo M, Sanou I, Ouedraogo KAJ, Dao K, Aubert J-E, Millogo Y (2020) Improvement of water resistance and thermal comfort of earth renders by cow dung: an ancestral practice of Burkina Faso. J Cult Herit 46:42–51. https://doi.org/10.1016/j.culher.2020.04.009

    Article  Google Scholar 

  19. Vissac A, Colas E, Fontaine L, Bourges A, Joffroy T, Gandreau D, Anger R (2012) Protection Et conservation Du patrimoine architectural en terre par des stabilisants naturels, d’origine animale et végétale. Interactions argiles/biopolymères (projet PaTerre+). Sciences des matériaux du patrimoine culturel. Ministère de la Culture et de la Communication, Paris, France, pp 135–139

    Google Scholar 

  20. DIN 18947 : 2018-12 (German Institute for Standardisation) (2018) Earth plasters - Requirements, test and labelling

  21. UNIFEM (Fonds de Développement des Nations Unies pour la Femme) (1997) Le karité, L’or Blanc Des africaines. Bur Régional Dakar Sénégal 39p

  22. Yé S, Lebeau F, Wathelet J-P, Leemans V, Destain M-F (2007) Etude des paramètres opératoires de pressage mécanique des amandes de Vitellaria paradoxa Gaertn C.F. (karité). Biotechnol Agron Soc Env

  23. Kpegba K, Kpokanu SA, Simalou O, Novidzro KM, Koumaglo KH (2017) Evaluation des techniques de production Du Beurre De karité Au Togo. Int J Biol Chem Sci 11:1577. https://doi.org/10.4314/ijbcs.v11i4.14

    Article  CAS  Google Scholar 

  24. Kapseu C, Jiokap Nono Y, Parmentier M, Dirand M, Dellacherie J (2001) Acides gras et triglycérides du beurre de karité du Cameroun. Riv Ital Delle Sostanze Grasse 78:31–34

    CAS  Google Scholar 

  25. Allal F, Vaillant A, Sanou H, Kelly B, Bouvet J-M (2008) Isolation and characterization of new microsatellite markers in shea tree (Vitellaria paradoxa C. F. Gaertn): permanent genetic resources. Mol Ecol Resour 8:822–824. https://doi.org/10.1111/j.1755-0998.2007.02079.x

    Article  CAS  PubMed  Google Scholar 

  26. Ouedraogo M, Dao K, Millogo Y, Aubert J-E, Messan A, Seynou M, Zerbo L, Gomina M (2019) Physical, thermal and mechanical properties of adobes stabilized with fonio (Digitaria exilis) straw. J Build Eng 23:250–258. https://doi.org/10.1016/j.jobe.2019.02.005

    Article  Google Scholar 

  27. NF EN 1015-10/A1 (2007) Methods of Test for Mortar for Masonry. Part 10: Determination of Apparent Density of Hardened Mortar

  28. CEN - EN 15801 (2009) : (2009) Conservation of cultural property - Test methods - Determination of water absorption by capillarity

  29. CEN - EN 1015-11 (2019) Methods of test for mortar for masonry - part 11. Determination of flexural and compressive strength of hardened mortar

  30. Millogo Y, Aubert J-E, Hamard E, Morel J-C (2015) How properties of Kenaf fibers from Burkina Faso Contribute to the reinforcement of Earth blocks. Materials 8:2332–2345. https://doi.org/10.3390/ma8052332

    Article  CAS  PubMed Central  Google Scholar 

  31. El Fels L, Zamama M, El Asli A, Hafidi M (2014) Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests. Int Biodeterior Biodegrad 87:128–137. https://doi.org/10.1016/j.ibiod.2013.09.024

    Article  CAS  Google Scholar 

  32. Rana R, Müller G, Naumann A, Polle A (2008) FTIR spectroscopy in combination with principal component analysis or cluster analysis as a tool to distinguish beech (Fagus sylvatica L.) trees grown at different sites. hfsg 62:530–538. https://doi.org/10.1515/HF.2008.104

    Article  CAS  Google Scholar 

  33. Abouelwafa R, Amir S, Souabi S, Winterton P, Ndira V, Revel J, Hafidi M (2008) The fulvic acid fraction as it changes in the mature phase of vegetable oil-mill sludge and domestic waste composting. Bioresour Technol 99:6112–6118. https://doi.org/10.1016/j.biortech.2007.12.033

    Article  CAS  PubMed  Google Scholar 

  34. Fernández K, Agosin E (2007) Quantitative Analysis of Red Wine Tannins using Fourier-Transform Mid-infrared Spectrometry. J Agric Food Chem 55:7294–7300. https://doi.org/10.1021/jf071193d

    Article  CAS  PubMed  Google Scholar 

  35. Amir S, Hafidi M, Merlina G, Revel J-C (2005) Structural characterization of fulvic acids during composting of sewage sludge. Process Biochem 40:1693–1700. https://doi.org/10.1016/j.procbio.2004.06.037

    Article  CAS  Google Scholar 

  36. Kaiser M, Ellerbrock RH (2005) Functional characterization of soil organic matter fractions different in solubility originating from a long-term field experiment. Geoderma 127:196–206. https://doi.org/10.1016/j.geoderma.2004.12.002

    Article  CAS  Google Scholar 

  37. Ait Baddi G, Hafidi M, Cegarra J, Alburquerque JA, Gonzálvez J, Gilard V, Revel J-C (2004) Characterization of fulvic acids by elemental and spectroscopic (FTIR and 13 C-NMR) analyses during composting of olive mill wastes plus straw. Bioresour Technol 93:285–290. https://doi.org/10.1016/j.biortech.2003.10.026

    Article  CAS  PubMed  Google Scholar 

  38. Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior Biodegrad 52:151–160. https://doi.org/10.1016/S0964-8305(03)00052-0

    Article  CAS  Google Scholar 

  39. Gnoumou LVL, Millogo Y, Aubert J-E, Ouedraogo M, Sanou I, Zoungrana J, Gomina M (2023) Use of a natural clayey soil from Burkina Faso to Reinforce Natural Rubber. Chem Afr 14. https://doi.org/10.1007/s42250-023-00683-7

  40. Ajouguim S, Talibi S, Djelal-Dantec C, Hajjou H, Waqif M, Stefanidou M, Saadi L (2021) Effect of Alfa fibers on the mechanical and thermal properties of compacted earth bricks. Mater Today Proc 37:4049–4057. https://doi.org/10.1016/j.matpr.2020.07.539

    Article  CAS  Google Scholar 

  41. Elmoudnia H, Faria P, Jalal R, Waqif M, Saadi L (2023) Effectiveness of alkaline and hydrothermal treatments on cellulosic fibers extracted from the Moroccan Pennisetum Alopecuroides plant: Chemical and morphological characterization. Carbohydr Polym Technol Appl 5:100276. https://doi.org/10.1016/j.carpta.2022.100276

    Article  CAS  Google Scholar 

  42. Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012

    Article  CAS  Google Scholar 

  43. Mellon RM, Sharma HSS (2002) Thermogravimetric analysis of perennial ryegrass: relationship between dry matter digestibility and thermal profiles. Thermochim Acta 161–168

  44. Ouajai S, Shanks RA (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab 89:327–335. https://doi.org/10.1016/j.polymdegradstab.2005.01.016

    Article  CAS  Google Scholar 

  45. Lekshmi MS, Vishnudas S, Nair DG (2020) Strength, sorptivity and shrinkage characteristics of cow dung stabilized mud mortar. Mater Today Proc 32:782–787. https://doi.org/10.1016/j.matpr.2020.03.715

    Article  CAS  Google Scholar 

  46. Ouedraogo M, Bamogo H, Sanou I, Mazars V, Aubert J-E, Millogo Y (2023) Microstructural, Physical and mechanical characteristics of Adobes Reinforced with Sugarcane Bagasse. Buildings 13:117. https://doi.org/10.3390/buildings13010117

    Article  Google Scholar 

  47. Lachheb M, Youssef N, Younsi Z (2023) A Comprehensive Review of the improvement of the Thermal and Mechanical Properties of Unfired Clay Bricks by incorporating Waste materials. Buildings 13:2314. https://doi.org/10.3390/buildings13092314

    Article  Google Scholar 

  48. Charai M, Salhi M, Horma O, Mezrhab A, Karkri M, Amraqui S (2022) Thermal and mechanical characterization of adobes bio-sourced with Pennisetum setaceum fibers and an application for modern buildings. Constr Build Mater 326:126809. https://doi.org/10.1016/j.conbuildmat.2022.126809

    Article  Google Scholar 

  49. Ouedraogo M, Bamogo H, Sanou I, Dao K, Ouedraogo KAJ, Aubert J-E, Millogo Y (2023) Microstructure, Physical and Mechanical properties of Adobes stabilized with Rice Husks. Int J Archit Herit 17:1348–1363. https://doi.org/10.1080/15583058.2022.2034072

    Article  Google Scholar 

  50. Santos T, Nunes L, Faria P (2017) Production of eco-efficient earth-based plasters: influence of composition on physical performance and bio-susceptibility. J Clean Prod 167:55–67. https://doi.org/10.1016/j.jclepro.2017.08.131

    Article  CAS  Google Scholar 

  51. Čechová E (2009) The effect of linseed oil on the properties of lime-based restoration mortars. PhD Thesis, University of Bologna, Italy

  52. Minke G (2007) Building with earth – 30 years of research and development at the University of Kassel. In: International symposium on earthen structures, Bangalore, Interline Publishing

  53. Limami H, Manssouri I, Cherkaoui K, Khaldoun A (2021) Mechanical and physicochemical performances of reinforced unfired clay bricks with recycled Typha-fibers waste as a construction material additive. Clean Eng Technol 2:100037. https://doi.org/10.1016/j.clet.2020.100037

    Article  Google Scholar 

  54. Eires R, Camões A, Jalali S (2017) Enhancing water resistance of earthen buildings with quicklime and oil. J Clean Prod 142:3281–3292. https://doi.org/10.1016/j.jclepro.2016.10.141

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all laboratory technicians of “Laboratoire Materiaux et Durabilité des Constructions” of the Université Paul Sabatier, Toulouse III (France) for their constant help in the realization of microstructural characterization.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Bamogo Halidou and Lohami Valentin Landry Gnoumou carried out the experiments and wrote the paper. Aubert Jean-Emmanuel and Millogo Younoussa also contributed to write the paper and have validated the experiments. All of the four authors participated in the final corrections of the paper and have contributed to the manuscript reviews. All authors have read and agreed to the publishing of this manuscript version.

Corresponding author

Correspondence to Younoussa Millogo.

Ethics declarations

Conflict of Interest

The four authors declare no conflict of interest during the paper writing. Younoussa Millogo is Associate Editor of Chemistry Africa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamogo, H., Gnoumou, L.V.L., Aubert, JE. et al. Influence of Shea Butter Residues on the Physico-Mechanical Properties of Earth Renders. Chemistry Africa 7, 1337–1352 (2024). https://doi.org/10.1007/s42250-023-00847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00847-5

Keywords

Navigation