Skip to main content
Log in

Anticancer and Apoptotic Effects of Hymenodictyon floribundum (Hochst. & Steud.) B.L.Rob. Stem Bark Hydroethanolic Extract

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Purpose

The present study aimed to examine in vitro anticancer and apoptotic effects of the 80% ethanolic extract of Hymenodictyon floribundum and isolated compounds on A549 human lung cancer cell lines. Furthermore, isolated compounds and crude extract were investigated for their antimicrobial activity against Aspergillus niger, Pseudomonas aeruginosa, Bacillus subtilis, Escherichia coli, Candida albicans, and Staphylococcus aureus.

Methods

The anticancer activity was examined by trypan blue exclusion and MTT assays. Flow cytometry was used to assess apoptosis using the Annexin V-FITC/PI technique, the antimicrobial activity was assessed by using Broth microdilution method against six pathogenic microbes. The GC–MS, 1H NMR, 13C NMR, and mass spectral data were used to elucidate the structure of isolated compounds.

Results

The study resulted in the isolation of two compounds, 7-Hydroxy-6- methoxycoumarin (A) and 2,2,4-Trimethyl-3-(3,8,12,16-tetramethyl-heptadeca-3,7,11,15-tetraenyl)-cyclohexanol (K). The compound A and K inhibited the growth of A549 lung cancer cell lines with IC50 values of 77.56 µg/mL and 92.13 µg/mL, respectively. The anticancer effects of compounds A and K were due to early and late apoptotic cell death induction. Compounds A and K exhibited potential antimicrobial activity against all microbes tested. The highest antimicrobial activity was shown by compound A against S. aureus with a minimum inhibitory concentration (MIC) of 62.5 µg/mL.

Conclusion

These findings provide evidence that the stem bark extract of H. florubundum contains compounds with both anticancer and antimicrobial activity. The isolated compounds were found to possess antimicrobial activity and inhibit the growth of A549-Human lung cancer cells by inducing apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

Data will be made available on request.

Abbreviations

DCM:

Dichloromethane

DMSO:

Dimethyl sulphoxide

GC:

Gas chromatography

GC–MS:

Gas chromatography-mass spectrometer

ICCR:

Indian council for cultural relations

MTT:

3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide

MIC:

Minimum inhibitory concentration

MBC:

Minimum bactericidal concentration

MFC:

Minimum fungicidal concentration

NMR:

Nuclear magnetic resonance

NCCS:

National centre for cell science

O.D:

Optic density

P.E:

Petroleum ether

PI:

Propidium iodide

PBS:

Phosphate buffer solution

SD:

Standard deviation

TLC:

Thin Layer Chromatography

TSB:

Trypticase Soy Broth

UV:

Ultraviolet light

References

  1. Kooti W, Servatyari K, Behzadifar M, Asadi-Samani M, Sadeghi F, Nouri B, Zare Marzouni H (2017) Effective medicinal plant in cancer treatment, part 2: review study. J Evid-Based Complement Alternat Med 22(4):982–995. https://doi.org/10.1177/2156587217696927

    Article  CAS  Google Scholar 

  2. Xiang D, Hu S, Mai T, Zhang X, Zhang L, Wang S et al (2022) Worldwide cancer statistics of adults over 75 years old in 2019: a systematic analysis of the global burden of disease study 2019. BMC Public Health 22(1):1–14. https://doi.org/10.1186/s12889-022-14412-1

    Article  Google Scholar 

  3. Chhikara BS & Parang K (2022) Chemical Biology Letters Global Cancer Statistics 2022: the trends projection analysis. Chem Biol Lett 2023(1):451. https://pubs.thesciencein.org/cbl

  4. Fahmy SA, Brüßler J, Alawak M, El-Sayed MMH, Bakowsky U, Shoeib T (2019) Chemotherapy based on supramolecular chemistry: a promising strategy in cancer therapy. Pharmaceutics 11(6):1–16. https://doi.org/10.3390/pharmaceutics11060292

    Article  CAS  Google Scholar 

  5. Tian Q, Wang L, Sun X, Zeng F, Pan Q, Xue M (2019) Scopoletin exerts anticancer effects on human cervical cancer cell lines by triggering apoptosis, cell cycle arrest, inhibition of cell invasion and PI3K/AKT signalling pathway. J BUON 24(3):997–1002

    PubMed  Google Scholar 

  6. Ibrahim B, Sowemimo A, Spies L, Koekomoer T, Van De Venter M, Odukoya OA (2013) Antiproliferative and apoptosis inducing activity of Markhamia tomentosa leaf extract on HeLa cells. J Ethnopharmacol 149(3):745–749. https://doi.org/10.1016/j.jep.2013.07.040

    Article  PubMed  Google Scholar 

  7. Roy A, Ahuja S & Bharadvaja N (2017) Anticancer activity of medicinal plants Actaea racemosa. iMedPub J 1(2019):1–5

  8. Khairunnisa K, Karthik D (2014) Evaluation of in-vitro apoptosis induction, cytotoxic activity of Hymenodictyon excelsum (Roxb) Wall in Dalton’s lymphoma ascites (DLA) and Lung fibroblast—Mouse L929 cell lines. J Appl Pharm Sci 4(08):11–17. https://doi.org/10.7324/JAPS.2014.40803

    Article  Google Scholar 

  9. Marealle AI, Innocent E, Andrae-Marobela K, Qwarse M, Machumi F, Nondo RRSO et al (2022) Safety evaluation and bioassay-guided isolation of antimycobacterial compounds from Morella salicifolia root ethanolic extract. J Ethnopharmacol 296(June):115501. https://doi.org/10.1016/j.jep.2022.115501

    Article  CAS  PubMed  Google Scholar 

  10. Hilonga S, Otieno JN, Ghorbani A, Pereus D, Kocyan A, de Boer H (2019) Trade of wild-harvested medicinal plant species in local markets of Tanzania and its implications for conservation. S Afr J Bot 122:214–224. https://doi.org/10.1016/j.sajb.2018.08.012

    Article  Google Scholar 

  11. Kebebew M & Mohamed E (2017) Indigenous knowledge on use of medicinal plants by indigenous people of Lemo District, Hadiya Zone, Southern Ethiopia. 124 Int J Herbal Med 5(4):124–135. https://www.florajournal.com/archives/2017/vol5issue4/PartB/6-3-17-801.pdf

  12. Fernandes NAF, Canelo LIN, De Mendonça DIMD, De Mendonça AJG (2015) Acetylcholinesterase inhibitory activity of extracts from angolan medicinal plants. Int J Pharmacogn Phytochem Res 7(4):768–776

    Google Scholar 

  13. Jiao C, Xie YZ, Yang X, Li H, Li XM, Pan HH et al (2013) Anticancer activity of Amauroderma rude. PLoS One. https://doi.org/10.1371/journal.pone.0066504

    Article  PubMed Central  PubMed  Google Scholar 

  14. Mohamed A (2017) Evaluation of antimicrobial activity of different solvent extracts of Saussurea Lappa. World J Pharm Pharmaceut Sci 4(2):12–18. https://doi.org/10.20959/wjpps20179-9868

    Article  CAS  Google Scholar 

  15. Gupta D, Dubey J, Kumar M (2016) Phytochemical analysis and antimicrobial activity of some medicinal plants against selected common human pathogenic microorganisms. Asian Pacific J Trop Dis 6(1):15–20. https://doi.org/10.1016/S2222-1808(15)60978-1

    Article  CAS  Google Scholar 

  16. Romulo A, Zuhud EAM, Rondevaldova J, Kokoska L (2018) Screening of in vitro antimicrobial activity of plants used in traditional indonesian medicine. Pharm Biol 56(1):287–293. https://doi.org/10.1080/13880209.2018.1462834

    Article  PubMed Central  PubMed  Google Scholar 

  17. Naz R, Ayub H, Nawaz S, Islam ZU, Yasmin T, Bano A et al (2017) Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complement Altern Med 17(1):1–13. https://doi.org/10.1186/s12906-017-1815-z

    Article  CAS  Google Scholar 

  18. Tailulu A, Li M, Ye B, Al-qudaimi R, Cao F, Liu W, Shi P (2022) Antimicrobial and anticancer activities of Hainan dry noni fruit alcoholic extracts and their novel compounds identification using UPLC-Q-Exactive Obitrap-MS/MS. J Pharm Biomed Anal 220(August):114989. https://doi.org/10.1016/j.jpba.2022.114989

    Article  CAS  PubMed  Google Scholar 

  19. Vijayan A (2017) Share Your Innovations through JACS directory journal of natural products and resources phytochemical analysis of Elaeocarpus blascoi Weibel using gas chromatography-mass spectroscopy. J Nat Prod Resour 3(2):125–129. http://www.jacsdirectory.com/jnpr

  20. Ugochi N, Ogugofor MO (2019) Gas Chromatography-Mass Spectrometry analysis of bioactive chemical compounds of ethyl acetate fraction of Lantana camara Leaf: a potential folklore medicinal plant. Int J Biol Pharm Allied Sci. https://doi.org/10.31032/ijbpas/2019/8.10.4819

    Article  Google Scholar 

  21. Demirgan R, Karagöz A, Pekmez M, Önay-Uçar E, Artun FT, Gürer Ç, Mat A (2016) In vitro anticancer activity and cytotoxicity of some papaver alkaloids on cancer and normal cell lines. Afr J Tradit Complement Altern Med 13(3):22–26. https://doi.org/10.4314/ajtcam.v13i3.3

    Article  CAS  Google Scholar 

  22. Moradi M, Karimi A, Alidadi S (2016) In vitro antiproliferative and apoptosis-inducing activities of crude ethyle alcohole extract of Quercus brantii L. acorn and subsequent fractions. Chin J Nat Med 14(3):196–202. https://doi.org/10.1016/S1875-5364(16)30016-4

    Article  CAS  PubMed  Google Scholar 

  23. Mogana R, Wiart C (2013) Potential of Scopoletin isolated from Canarium patentinervium Miq. (Burseraceae Kunth). Evid-Based Complement Altern Med 2013:1–6

    Article  Google Scholar 

  24. Chakraborty M, Karmakar I & Haldar PK (2016) Cytotoxic and anti proliferative activity of Hymenodictyon excelsum in ehrlich ascites carcinoma bearing mice: in vitro and in vivo. (March) 3–10

  25. Kurdekar RR, Hegde GR, Kulkarni MV & Mulgund GS (2014) International Journal of Pharmaceutical and Isolation and Characterization of Scopoletin—an Anticancer Compound from the Bark of Hymenodictyon Obovatum Wall. 3(6):469–471

  26. Adams M, Efferth T, Bauer R (2006) Activity-guided isolation of scopoletin and isoscopoletin, the inhibitory active principles towards CCRF-CEM leukaemia cells and multi-drug resistant CEM/ADR5000 cells, from Artemisia argyi. Planta Med 72(9):862–864. https://doi.org/10.1055/s-2006-947165

    Article  CAS  PubMed  Google Scholar 

  27. Barreiro Arcos ML, Cremaschi G, Werner S, Coussio J, Ferraro G, Anesini C (2006) Tilia cordata Mill. Extracts and scopoletin (isolated compound): differential cell growth effects on lymphocytes. Phytother Res 20(1):34–40. https://doi.org/10.1002/ptr.1798

    Article  PubMed  Google Scholar 

  28. Nelson V, Sahoo NK, Sahu M, Sudhan H, Pullaiah CP (2020) In vitro anticancer activity of Eclipta alba whole plant extract on colon cancer cell. BMC Complement Med Ther 9:1–8

    Google Scholar 

  29. Kaigongi MM, Lukhoba CW, Yaouba S, Makunga NP, Githiomi J, Yenesew A (2020) In vitro antimicrobial and antiproliferative activities of the root bark extract and isolated chemical constituents of Zanthoxylum paracanthum kokwaro (Rutaceae). Plants 9(7):1–15. https://doi.org/10.3390/plants9070920

    Article  CAS  Google Scholar 

  30. Meilawati L, Dewi RM, Tasfiyati AN, Septama AW, Antika LD (2023) Scopoletin: anticancer potential and mechanism of action. Asian Pac J Trop Biomed 13(October 2022):1–8. https://doi.org/10.4103/2221-1691.367685

    Article  CAS  Google Scholar 

  31. Aldakheel RK, Rehman S, Almessiere MA, Khan FA, Gondal MA, Mostafa A, Baykal A (2020) Bactericidal and in vitro cytotoxicity of Moringa oleifera seed extract and its elemental analysis using laser-induced breakdown spectroscopy. Pharmaceuticals 13(8):1–18. https://doi.org/10.3390/ph13080193

    Article  CAS  Google Scholar 

  32. Faruque MO, Ankhi UR, Kamaruzzaman M, Barlow JW, Zhou B, Hao J et al (2019) Chemical composition and antimicrobial activity of Congea tomentosa, an ethnomedicinal plant from Bangladesh. Ind Crop Prod 141(August):111745. https://doi.org/10.1016/j.indcrop.2019.111745

    Article  CAS  Google Scholar 

  33. Ayele TT, Gurmessa GT, Abdissa Z, Kenasa G, Abdissa N (2022) Oleanane and stigmasterol-type triterpenoid derivatives from the stem bark of Albizia gummifera and their antibacterial activities. J Chem. https://doi.org/10.1155/2022/9003143

    Article  Google Scholar 

  34. Tesemma M, Adane L, Tariku Y, Muleta D, Demise S (2013) Isolation of compounds from acetone extract of root wood of Moringa stenopetala and evaluation of their antibacterial activities. Res J Med Plant 7(1):32–47. https://doi.org/10.3923/rjmp.2013.32.47

    Article  CAS  Google Scholar 

  35. Gokak I, Goundi RM, Kurdekar R & Hegde GR (2012) Screening of tree barks of Heterophragma quadriloculare (Roxb.) K. Schum. and Hymenodictyon obovatum Wall. from Kumta and Dharwad, Karnataka, India. Int J Med Aromat Plants 2(1):167–171. http://openaccessscience.com/pdf-files/vol2_1_mar2012/IJMAP_2_1_23_Heterophragma-Hymenodictyon.pdf

  36. Kariba RM (2002) Antimicrobial activity of Hymenodictyon parvifolium. Fitoterapia 73(6):523–525. https://doi.org/10.1016/S0367-326X(02)00176-4

    Article  CAS  PubMed  Google Scholar 

  37. Napiroon T, Bacher M, Balslev H, Tawaitakham K, Santimaleeworagun W, Vajrodaya S (2018) Scopoletin from Lasianthus lucidus Blume (Rubiaceae): a potential antimicrobial against multidrug-resistant Pseudomonas aeruginosa. J Appl Pharm Sci 8(9):1–6. https://doi.org/10.7324/JAPS.2018.8901

    Article  CAS  Google Scholar 

  38. Annisa R, Dewi TJD, Mutiah R, Nurjanah S (2020) Antioxidants activity of self-nanoemulsifying drug delivery system on dayak onions extract (Eleutherine palmifolia) using DPPH (1,1-Diphenyl-2-picrylhydrazyl) method. J Trop Pharm Chem 5(1):1–14

    Google Scholar 

  39. Buathong R, Chamchumroon V, Schinnerl J, Bacher M, Santimaleeworagun W, Kraichak E, Vajrodaya S (2019) Chemovariation and antibacterial activity of extracts and isolated compounds from species of Ixora and Greenea (Ixoroideae, Rubiaceae). PeerJ 2019(5):1–14. https://doi.org/10.7717/peerj.6893

    Article  CAS  Google Scholar 

  40. De La Cruz-Sánchez NG, Gómez-Rivera A, Alvarez-Fitz P, Ventura-Zapata E, Pérez-García MD, Avilés-Flores M et al (2019) Antibacterial activity of Morinda citrifolia Linneo seeds against Methicillin-Resistant Staphylococcus spp. Microb Pathog 128(October 2018):347–353. https://doi.org/10.1016/j.micpath.2019.01.030

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Institute for applied biological research and development management, Pune Maharashtra, India, and the Institute of Research and Analytics Sangli, Maharashtra, India, for permitting us to access their facility to conduct anticancer and apoptosis activity.

Funding

This study was fully funded by Indian Council for Cultural Relations (ICCR) through the MEA-Africa Scholarship Program (G0179/2021).

Author information

Authors and Affiliations

Authors

Contributions

AAM: developed the idea, conducted the study and experimentation, gathered the information, and wrote the initial manuscript. SRB: performed the data analysis and created all the tables. KSJ: prepared all the figures. SBS: data analysis and NMR interpretation. AIM: identifying plants, data analysis and interpretation. VBS: reviewing and editing the manuscripts. PVA: NMR interpretation, reviewing, editing, and finishing the manuscript.

Corresponding author

Correspondence to Prashant V. Anbhule.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyo, A.A., Jagadhane, K.S., Bhosale, S.R. et al. Anticancer and Apoptotic Effects of Hymenodictyon floribundum (Hochst. & Steud.) B.L.Rob. Stem Bark Hydroethanolic Extract. Chemistry Africa 7, 1235–1250 (2024). https://doi.org/10.1007/s42250-023-00810-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00810-4

Keywords

Navigation