Skip to main content

Advertisement

Log in

Ruthenium Polypyridyl Complexes with Hydroxypyridine: Experimental, DFT Studies, and In Silico Antitubercular Activity Investigation

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This study reports the synthesis, spectroscopic, molecular properties, and in silico biological assessment of ruthenium polypyridyl complexes with a hydroxypyridine ligand, [Ru(bpy)2(N^O)](PF6) (Ru-1) and [Ru(phen)2(N^O)](PF6) (Ru-2). The compounds have been characterized by FT-IR, UV, single crystal X-ray crystallography while molecular electronic properties have been considered within the framework of density functional theory (DFT) computation. The explicit interpretation of the vibrational spectra was assigned by the VEDA4e program. The results obtained from the natural bond analysis explicated that the highest stabilization energy E(2) for the Ru-2 molecule is 343.53 kcal/mol while the Ru-1 compound was observed to possess E(2) energy of 302.42 kcal/mol. The studied Ru-2 compound has been observed to exhibit high gastrointestinal absorption which might restrict the brain-blood barrier or any cytochrome p450 inhibition (1A2, 2C19, 3A4, and 3A4) without infringing any of the Lipniski rules. The molecular docking experiment reveal that the Ru-2 compound binds effectively with 2nv6 tuberculosis receptor with a corresponding binding affinity of − 8.6 kcal/mol obtained for Ru-1 molecule. However, when both compounds were docked with the 5syj receptor, the binding affinity was observed to be − 7.5 and − 6.7 kcal/mol for Ru-2 and Ru-1 respectively, which is comparably higher than the binding score observed for isoniazid standard drug. Ru-2 complex was observed to possess a high energy gap of 2.948 eV with a chemical softness of 0.678 eV, thus suggesting the studied molecule is highly stable and suitable and can be used as a potential anti-tubercular agent. The Uv–vis spectroscopy study divulged that all absorption spectra occurred at the visible region for both molecules respectively, which is in tandem with the obtained experimental λmax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3:

Similar content being viewed by others

Data availability

All data are contained within the manuscript and electronic supporting information (ESI).

References

  1. Kumar V, Abbas AK, Fausto N, Mitchell RN (2007) Robbins Basic Pathology, 8th edn. Saunders Elsevier, pp 516–522

    Google Scholar 

  2. Ducati RG, Ruffino-Netto A, Basso LA, Santos DS (2006) The resumption of consumption: a review on tuberculosis. Mem Inst Oswaldo Cruz 101(7):697–714

    Article  CAS  PubMed  Google Scholar 

  3. DeVille K (1989) Robert koch: a life in medicine and bacteriology. Bioscience 39(7):493–495

    Google Scholar 

  4. Sahin C (2022) Synthesis, characterization, photophysical and electrochemical properties of pyridine based ruthenium complexes. Düzce Univ J Sci Technol 10(1):207–215. https://doi.org/10.29130/dubited.956216

    Article  Google Scholar 

  5. Qian BF, Wang JL, Jia AQ, Shi HT, Zhang QF (2021) Syntheses, reactivity, structures and photocatalytic properties of mononuclear ruthenium(II) complexes supported by 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3tacn) ligands”. Inorganica Chim Acta 516:120128

    Article  CAS  Google Scholar 

  6. Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS (2017) The development of anticancer ruthenium (II) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev 46(19):5771–5804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lapasam A, Banothu V, Addepally U, Kollipara MR (2019) Half-sandwich arene ruthenium, rhodium and iridium thiosemicarbazone complexes: synthesis, characterization and biological evaluation. J Chem Sci 132:1

    Google Scholar 

  8. Dömötör O, Enyedy ÉA (2019) Binding mechanisms of half-sandwich Rh (III) and Ru (II) arene complexes on human serum albumin: a comparative study. J Biol Inorg Chem 24:703–719

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lenis-Rojas OA, Fernandes AR, Roma-Rodrigues C, Baptista PV, Marques F, Pérez-Fernández D, Guerra-Varela J, Sánchez L, Vázquez-García D, Torres ML, Fernández A (2016) Heteroleptic mononuclear compounds of ruthenium (II): synthesis, structural analyses, in vitro antitumor activity and in vivo toxicity on zebrafish embryos. Dalton Trans 45(47):19127–19140

    Article  CAS  PubMed  Google Scholar 

  10. Yu Q, Liu Y, Xu L, Zheng C, Le F, Qin X, Liu Y, Liu J (2014) Ruthenium (II) polypyridyl complexes: cellular uptake, cell image and apoptosis of HeLa cancer cells induced by double targets. Eur J Med Chem 23(82):82–95

    Article  Google Scholar 

  11. Sahin C, Dittrich T, Varlikli C, Icli S, Lux-Steiner MC (2010) Role of side groups in pyridine and bipyridine ruthenium dye complexes for modulated surface photovoltage in nanoporous TiO2. Solar Energy Mater Solar Cells 94(4):686–90

    Article  CAS  Google Scholar 

  12. Louis H, Mathias GE, Unimuke TO, Emori W, Ling L, Owen AE, Adeyinka AS, Ntui TN, Cheng CR (2022) Isolation, characterization, molecular electronic structure investigation, and in-silico modeling of the anti-inflammatory potency of trihydroxystilbene. J Mol Struct 15(1266):133418

    Article  Google Scholar 

  13. Liang W, Luo X (2020) Theoretical studies of MoS2 and phosphorene drug delivery for antituberculosis drugs. J Phys Chem C 124(15):8279–87

    Article  CAS  Google Scholar 

  14. Zhang Z, Wang Q, Xue J, Du Y, Liu J, Hong Z (2020) Vibrational spectroscopic investigation into novel ternary eutectic formed between pyrazinamide, fumaric acid, and isoniazid. ACS Omega 5(28):17266–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garg A, Borah D, Trivedi P, Gogoi D, Chaliha AK, Ali AA, Chetia D, Chaturvedi V, Sarma D (2020) A simple work-up-free, solvent-free approach to novel amino acid linked 1, 4-disubstituted 1, 2, 3-triazoles as potent antituberculosis agents. ACS Omega 5(46):29830–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H (2009) Gaussian 16. Gaussian Inc, Wallingford

    Google Scholar 

  17. Dennington R, Keith TA, Millam JM (2016) GaussView 6.0. 16. Semichem Inc, Shawnee Mission

    Google Scholar 

  18. Farrugia LJ (1997) ORTEP-3 for Windows-a version of ORTEP-III with a Graphical User Interface (GUI). J Appl Crystallogr 30(5):565

    Article  ADS  CAS  Google Scholar 

  19. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminf 4(1):1–7

    Article  Google Scholar 

  20. Asogwa FC, Agwamba EC, Louis H, Muozie MC, Benjamin I, Gber TE, Mathias GE, Adeyinka AS, Ikeuba AI (2022) Structural benchmarking, density functional theory simulation, spectroscopic investigation and molecular docking of N-(1H-pyrrol-2-yl) methylene)-4-methylaniline as castration-resistant prostate cancer chemotherapeutic agent. Chem Phys Impact 5:100091

    Article  Google Scholar 

  21. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dassault Systemes (2020) Discovery Studio Visualizer. Dassualt Systeme Biovia Corp, 2020

  23. The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrodinger LLC (2015) Available: https://pymol.org

  24. Osigbemhe IG, Oyoita EE, Louis H, Khan EM, Etim EE, Edet HO, Ikenyirimba OJ, Oviawe AP, Obuye F (2022) Antibacterial potential of N-(2-furylmethylidene)-1, 3, 4-thiadiazole-2-amine: Experimental and theoretical investigations. J Indian Chem Soc 99(9):100597

    Article  CAS  Google Scholar 

  25. Eno EA, Patrick-Inezi FA, Louis H, Gber TE, Unimuke TO, Agwamba EC, Ikenyirimba OJ, Akpanke JA, Oyoita E, Ejiofor EU, Adalikwu SA (2022) Theoretical investigation and antineoplastic potential of Zn (ii) Complexes of 6-Methylpyridine-2- carbaldehyde-N (4)- ethylthiosemicarbazone. Chem Phys Impact 5:100094

    Article  Google Scholar 

  26. Jaziri E, Louis H, Gharbi C, Unimuke TO, Agwamba EC, Mathias GE, Fugita W, Nasr CB, Khedhiri L (2022) Synthesis, X-ray crystallography, molecular electronic property investigation, and leukopoiesis activity of novel 4, 6-dimethyl-1, 6-dihydropyridin-2-amino nitrate hybrid material. J Mol Struct 1268:133733

    Article  CAS  Google Scholar 

  27. Louis H, Mathias GE, Ikenyirimba OJ, Unimuke TO, Etiese D, Adeyinka AS (2022) Metal-doped Al12N12X (X = Na, Mg, K) nanoclusters as nanosensors for carboplastin: insight from first-principles computation. J Phys Chem 126(27):5066–5080

    Article  CAS  Google Scholar 

  28. Mohammadi MD, Abbas F, Louis H, Mathias GE, Unimuke TO (2022) Trapping of CO, CO2, H2S, NH3, NO, NO2, and SO2 by polyoxometalate compound. Comput Theor Chem 1215:113826

    Article  CAS  Google Scholar 

  29. Mohammad MD, Abdullah HY, Louis H, Mathias GE (2022) 2D boron nitride material as a sensor for H2SiCl2. Comput Theor Chem 1213:113742

    Article  Google Scholar 

  30. Osigbemhe IG, Oyoita EE, Louis H, Khan EM, Etim EE, Edet HO, Ikenyirimba OJ, Oviawe AP, Obuye F (2022) Antibacteria potential of N-(2-furylmethylidene)-, 3, 4-thiadiazole-2-amine: experimental and theoretical investigations. J Indian Chem Soc 99(9):100597

    Article  CAS  Google Scholar 

  31. Louis H, Ifediora LP, Enudi OC, Unimuke TO, Asogwa FC, Moshood YL (2021) Evaluation of the excited state dynamics, photophysical properties, and the influence of donor substitution in a donor-pi-acceptor system. J Mol Model 27(10):1–18

    Article  Google Scholar 

  32. Tuberculosis (2020) WHO Global Tuberculosis Report 2019. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2020. Accessed 18 Aug 2022

  33. Rawat P, Singh RN, Ranjan A, Ahmad S, Saxena R (2017) Antimycobacterial, antimicrobial activity, experiment (FT-IR, FT-Raman, NMR, UV-Vis DSC) and DFT (transition state, chemical reactivity, NBO NLO) studies on pyrrole-isonicotinyl hydrazine. Spectrochim Acta Part A Mol Biomol Spectrosc 179:1–10

    Article  ADS  CAS  Google Scholar 

  34. Anderson RF, Shinde SS, Maroz A, Boyd M, Palmer BD, Denny WA (2008) Intermediates in the reduction of the antituberculosis drug PA-824, (6S)-2-nitro-6-{[4-(trifluoromethoxy) benzyl] oxy}-6, 7-dihydro-5H-imidazole [2, 1-b] [1,3] oxazine, in aqueous solution. Org Biomol Chem 6(11):1973–1980

    Article  CAS  PubMed  Google Scholar 

  35. Liang J, Zhang X, Wang N, Chang T, Cui HL (2020) Vibrational spectra of pyrazinamide and isoniazid studied by terahertz spectroscopy and density functional theory. Spectrochim Acta Part A Mol Biomol Spectrosc 228:117591

    Article  CAS  Google Scholar 

  36. Govindarajan M, Karabacak M, Suvitha A, Periandy S (2012) FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO-LUMO and electronic structure calculation on 4-chloro-3-nitrotoluene. Spectrochim Acta Part A Mol Biomol Spectrosc 89:137–148

    Article  ADS  CAS  Google Scholar 

  37. Majerz I (2012) Directionality of inter-and intramolecular OHO hydrogen bonds: DFT study followed by AIM and NBO analysis. J Phys Chem A 116(30):7992–8000

    Article  CAS  PubMed  Google Scholar 

  38. Isravel AD, Jeyaraj JK, Thangasamy S, John WJ (2021) Comput Theor Chem 1202:113296

    Article  CAS  Google Scholar 

  39. Emamian S (2016) How the mechanism of a [3 +2] cycloaddition involving a stabilized N-lithiated azomethineylide towards a π-deficient alkene is changed to stepwise by solvent polarity? What is the origin of its region-and endo stereospecificity? A DFT study using NBO, QTAIM and NCI Analyses. RSC Adv 6(79):75299–75314

    Article  ADS  CAS  Google Scholar 

  40. Rad AS, Ardjmand M, Esfahani RM, Khodashenas B (2021) DFT Calculation towards the geometry optimization, electronic structure, infrared spectroscopy and UV-vis analyses of Favipiravir adsorption on the first-row transition metals doped fullerenes; a new strategy for COVID-19 therapy. Spectrochim Acta Part A Mol Biomol Spectrosc 247:119082

    Article  CAS  Google Scholar 

  41. Da Silva HC, De Souza LA, Santos HF, De Almeida WB (2020) Determination of anticancer Zn(ii)-rutin complex structures insolution through density functional theory calculations of 1H NMR and UV-VIS spectra. ACS Omega 5(6):3030–3042

    Article  PubMed  PubMed Central  Google Scholar 

  42. Olajumoke A, Suleiman O, Odoh SO (2021) Copper-oxo active sites for methane C-H activation in Zeolite: molecular understanding of methane hydroxylation on UV-Vis spectra. Inorg Chem 60(12):8489–8499

    Article  Google Scholar 

  43. Urbina F, Batra K, Luebke KJ, White JD, Matsiev D, Oison LL, Malerich JP, Hupcey MAZ, Madrid PB, Ekins S (2021) UV-adVISor: attention-based recurrent neutral networks to predict UV-Vis spectra. Anal Chem 93(48):16076–16085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang Y, Zhang J, Wang H, Yang W, Wang C, Peng Y, Chen J, Li J, Gao F (2022) Selective catalytic reduction of NOx with NH3 over Cu/SSZ-13: elucidating dynamics of Cu active sites with in situ UV-Vis spectroscopy and DFT calculations. J Phys Chem C 126(20):8720–8733

    Article  CAS  Google Scholar 

  45. Fang L, Shi Q, Nguyen J, Wu B, Wang Z, Lo I (2017) Removal mechanism of phosphate by lanthanum hydroxide nanorods: investigations using EXAFS, ATR-FTIR, DFT and surface complexation modeling approaches. Environ Sci Technol 51(21):12377–12384

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Luo J, Hu C, Meng X, Crittenden J, Qu J, Peng P (2017) Antimony removal from aqueous solution using novel α-MnO2 nanofibers: equilibrium, kinetic, and density functional theory studies. ACS Sustain Chem Eng 5(3):2255–2264

    Article  CAS  Google Scholar 

  47. Holdren S, Tsyshevsky R, Fears K, Owrutsky J, Wu T, Wang X, Eichhorn BW, Kuklja MM, Zachariah MR (2018) Adsorption and destruction of the G-series nerve agent simulant dimethyl methylphosphonate on zinc oxide. ACS Catal 9(2):902–911

    Article  Google Scholar 

  48. Rhodes C, Lappi S, Fischer D, Sambasivan S, Genzer J, Franzen S (2008) Characterization of monolayer formation on aluminum-doped zinc oxide thin films. Langmuir 24(2):433–440

    Article  CAS  PubMed  Google Scholar 

  49. Reyes YI, Franco FC (2019) DFT study on the effect of proximal residues on the mycobacterium tuberculosis catalase-peroxidase (KatG) heme compound I intermediate and its bonding interaction with isoniazid. R Soc Chem. https://doi.org/10.1039/c9cp01465a

    Article  Google Scholar 

  50. Agwupuye JA, Neji PA, Louis H, Odey JO, Unimuke TO, Bisiong EA, Eno EA, Utsu PM, Ntui TN (2021) Investigation on electronic structure, vibrational spectra, NBO analysis, and molecular docking studies of aflatoxins and selected emerging mycotoxins against wild-type androgen receptor. Heliyon 7(7):e07544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the Institute of International Education of the United States for the Fulbright Fellowship. The authors would like to acknowledge the center for high performance computing (CHPC), South Africa for providing computational resources for this research project.

Author information

Authors and Affiliations

Authors

Contributions

AOR: investigation, methodology, funding acquisition, validation, formal analysis, writing—original draft. JAO: conceptualization, visualization, resources, supervision. HL: investigation, formal analysis, writing—review and editing. SOA: investigation, formal analysis, writing—review and editing. AAA: investigation, formal analysis, writing. WAO: supervision, project administration, Writing—review and editing. GEM and MER: analysis and writing. AL: writing—review and editing. A-LM: computational resources.

Corresponding author

Correspondence to Abdullahi O. Rajee.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 538 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajee, A.O., Obaleye, J.A., Louis, H. et al. Ruthenium Polypyridyl Complexes with Hydroxypyridine: Experimental, DFT Studies, and In Silico Antitubercular Activity Investigation. Chemistry Africa 7, 835–847 (2024). https://doi.org/10.1007/s42250-023-00769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00769-2

Keywords

Navigation