Skip to main content

Advertisement

Log in

Occurrence and Ecological Risk Assessment of Pharmaceutical Residues in Effluents from Pharmaceutical Manufacturing Facilities in Kumasi, Ghana

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Wastewater from the pharmaceutical industry is a significant source of contamination in the aquatic environment. Due to the absence of appropriate legislation, or challenges in the enforcement of existing legislation in many developing countries, many pharmaceutical companies employ improper disposal strategies for liquid and solid waste. As such, wastewater is usually released into the environment with little or no pre-treatment. The impact on the environment could be deleterious. This work, thus, evaluated the occurrence of pharmaceutical residues in soil and effluents from five pharmaceutical industries in Kumasi, Ghana and assessed the ecotoxicological risk posed by the presence of these pharmaceuticals to some organisms in the aquatic environment. Target pharmaceutical compounds (paracetamol, diclofenac, caffeine, amoxicillin, ciprofloxacin, and metronidazole) were quantified using an HPLC–PDA method. The concentrations of the pharmaceuticals were high, ranging from 1.17 to 350.55 mg/L in the water samples and 0.04–28.58 mg/kg in sediment samples. Diclofenac (350.55 mg/L and 28.58 mg/kg) and caffeine (27.69 mg/L and 36.36 mg/kg) showed the highest concentrations among the six-targeted compounds in water and soil samples, respectively. Paracetamol was the most ubiquitous analyte in both wastewater and sediment samples; its highest concentrations were 16.65 mg/L and 15.00 mg/kg respectively. Risk quotients obtained from the risk assessment were mostly > 1. Diclofenac posed the most significant risk to fish, daphnia, and algae (658.93, 15,934.10 and 24,175.86, respectively), while ciprofloxacin posed a moderate risk to fish and daphnia (0.27 and 0.57 respectively) in wastewater samples. For soil samples, diclofenac posed the greatest risks to algae (1968.28), whereas paracetamol posed the greatest risk to daphnia (1630.430). This is the first comprehensive study on the occurrence and ecological risk assessment of pharmaceuticals in industrial effluents of pharmaceutical manufacturing companies in Ghana. Routine monitoring of the effluents of pharmaceutical manufacturing facilities is necessary to reduce the influx of pharmaceutical compounds in various environmental matrices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Materials

All data obtained or analyzed during this study are included in this published article.

References

  1. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(suppl 6):907–938. https://doi.org/10.1289/ehp.99107s6907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Calderón-Preciado D, Matamoros V, Bayona JM (2011) Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network. Sci Total Environ 412–413:14–19. https://doi.org/10.1016/j.scitotenv.2011.09.057

    Article  CAS  PubMed  Google Scholar 

  3. Gyesi JN et al (2022) Occurrence of pharmaceutical residues and antibiotic-resistant bacteria in water and sediments from major reservoirs (Owabi and Barekese Dams) in Ghana. J Chem 2022:e1802204. https://doi.org/10.1155/2022/1802204

    Article  CAS  Google Scholar 

  4. Matongo S, Birungi G, Moodley B, Ndungu P (2015) Occurrence of selected pharmaceuticals in water and sediment of Umgeni River, KwaZulu-Natal, South Africa. Environ Sci Pollut Res 22(13):10298–10308. https://doi.org/10.1007/s11356-015-4217-0

    Article  CAS  Google Scholar 

  5. Vergeynst L, Haeck A, De Wispelaere P, Van Langenhove H, Demeestere K (2015) Multi-residue analysis of pharmaceuticals in wastewater by liquid chromatography—magnetic sector mass spectrometry: method quality assessment and application in a Belgian case study. Chemosphere 119:S2–S8. https://doi.org/10.1016/j.chemosphere.2014.03.069

    Article  CAS  PubMed  Google Scholar 

  6. Mimeault C, Woodhouse AJ, Miao X-S, Metcalfe CD, Moon TW, Trudeau VL (2005) The human lipid regulator, gemfibrozil bioconcentrates and reduces testosterone in the goldfish, Carassius auratus. Aquat Toxicol 73(1):44–54

    Article  CAS  PubMed  Google Scholar 

  7. Nash JP et al (2004) Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ Health Perspect 112(17):1725–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sanchez W et al (2011) Adverse effects in wild fish living downstream from pharmaceutical manufacture discharges. Environ Int 37(8):1342–1348

    Article  CAS  PubMed  Google Scholar 

  9. Šimatović A, Udiković-Kolić N (2020) Antibiotic resistance in pharmaceutical industry effluents and effluent-impacted environments. In: Manaia CM, Donner E, Vaz-Moreira I, Hong P (eds) Antibiotic resistance in the environment: a worldwide overview in the handbook of environmental chemistry. Springer International Publishing, Cham, pp 101–122. https://doi.org/10.1007/698_2019_389

    Chapter  Google Scholar 

  10. Wang K, Zhuang T, Su Z, Chi M, Wang H (2021) Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: occurrence, removal and environmental impacts. Sci Total Environ 788:147811

    Article  CAS  PubMed  Google Scholar 

  11. Sim W-J, Lee J-W, Lee E-S, Shin S-K, Hwang S-R, Oh J-E (2011) Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82(2):179–186

    Article  CAS  PubMed  Google Scholar 

  12. Otoo BA, Amoabeng IA, Darko G, Borquaye LS (2022) Antibiotic and analgesic residues in the environment—occurrence and ecological risk study from the Sunyani municipality, Ghana. Toxicol Rep 9:1491–1500. https://doi.org/10.1016/j.toxrep.2022.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caracciolo AB, Topp E, Grenni P (2015) Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities: a review. J Pharm Biomed Anal 106:25–36. https://doi.org/10.1016/j.jpba.2014.11.040

    Article  CAS  Google Scholar 

  14. Phillips PJ et al (2010) Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents. Environ Sci Technol 44(13):4910–4916. https://doi.org/10.1021/es100356f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use-present knowledge and future challenges. J Environ Manag 90(8):2354–2366

    Article  Google Scholar 

  16. Creusot N et al (2014) Identification of synthetic steroids in river water downstream from pharmaceutical manufacture discharges based on a bioanalytical approach and passive sampling. Environ Sci Technol 48(7):3649–3657. https://doi.org/10.1021/es405313r

    Article  CAS  PubMed  Google Scholar 

  17. Hussain S, Naeem M, Chaudhry MN (2016) Estimation of residual antibiotics in pharmaceutical effluents and their fate in affected areas. Pol J Environ Stud 25(2):607–614. https://doi.org/10.15244/pjoes/61229

    Article  CAS  Google Scholar 

  18. Ashfaq M et al (2017) Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan. Ecotoxicol Environ Saf 136:31–39

    Article  CAS  PubMed  Google Scholar 

  19. Balcıoğlu IA, Ötker M (2003) Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere 50(1):85–95

    Article  Google Scholar 

  20. SanJuan-Reyes N et al (2013) Effluent from an NSAID-manufacturing plant in Mexico induces oxidative stress on Cyprinus carpio. Water Air Soil Pollut 224:1–14

    Article  CAS  Google Scholar 

  21. Darko G, Borquaye LS, Acheampong A, Oppong K (2017) Veterinary antibiotics in dairy products from Kumasi, Ghana. Cogent Chem 3(1):1343636. https://doi.org/10.1080/23312009.2017.1343636

    Article  CAS  Google Scholar 

  22. Mingle CL, Darko G, Borquaye LS, Asare-Donkor NK, Woode E, Koranteng F (2021) Veterinary drug residues in beef, chicken, and egg from Ghana. Chem Afr 4(2):339–348. https://doi.org/10.1007/s42250-020-00225-5

    Article  CAS  Google Scholar 

  23. Borquaye LS et al (2019) Occurrence of antibiotics and antibiotic-resistant bacteria in landfill sites in Kumasi. Ghana. J Chem 2019:e6934507. https://doi.org/10.1155/2019/6934507

    Article  CAS  Google Scholar 

  24. Amoabeng IA, Otoo BA, Darko G, Borquaye LS (2022) Disposal of unused and expired medicines within the sunyani municipality of Ghana: a cross-sectional survey. J Environ Public Health. https://doi.org/10.1155/2022/6113346

    Article  PubMed  PubMed Central  Google Scholar 

  25. Borquaye LS et al (2018) Disposal of unused and expired medicines in Ghana. West Afr J Pharm 29(1):83–91

    Google Scholar 

  26. Achaw O-W (2012) Patterns of waste generation, treatment and disposal in the chemical and allied industries in Ghana

  27. Akanchise T, Boakye S, Borquaye LS, Dodd M, Darko G (2020) Distribution of heavy metals in soils from abandoned dump sites in Kumasi, Ghana. Sci Afr 10:e00614. https://doi.org/10.1016/j.sciaf.2020.e00614

    Article  Google Scholar 

  28. Konwuruk N, Borquaye LS, Darko G, Dodd M (2021) Distribution, bioaccessibility and human health risks of toxic metals in peri-urban topsoils of the Kumasi Metropolis. Sci Afr 11:e00701. https://doi.org/10.1016/j.sciaf.2021.e00701

    Article  CAS  Google Scholar 

  29. Boadi NO, Borquaye LS, Darko G, Wemegah DD, Agorsor D, Akrofi R (2018) Assessment of the quality of the Owabi reservoir and its tributaries. Cogent Food Agric 4(1):1492360. https://doi.org/10.1080/23311932.2018.1492360

    Article  CAS  Google Scholar 

  30. Bouissou-Schurtz C et al (2014) Ecological risk assessment of the presence of pharmaceutical residues in a French national water survey. Regul Toxicol Pharmacol 69(3):296–303. https://doi.org/10.1016/j.yrtph.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  31. Liu J, Lu G, Yang H, Dang T, Yan Z (2020) Ecological impact assessment of 110 micropollutants in the Yarlung Tsangpo River on the Tibetan Plateau. J Environ Manag 262:110291. https://doi.org/10.1016/j.jenvman.2020.110291

    Article  CAS  Google Scholar 

  32. Azanu D, Styrishave B, Darko G, Weisser JJ, Abaidoo RC (2018) Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Sci Total Environ 622–623:293–305. https://doi.org/10.1016/j.scitotenv.2017.11.287

    Article  CAS  PubMed  Google Scholar 

  33. Sanderson H, Johnson DJ, Wilson CJ, Brain RA, Solomon KR (2003) Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicol Lett 144(3):383–395. https://doi.org/10.1016/S0378-4274(03)00257-1

    Article  CAS  PubMed  Google Scholar 

  34. Ankrah D, Hallas J, Odei J, Asenso-Boadi F, Dsane-Selby L, Donneyong M (2019) A review of the Ghana National Health Insurance Scheme claims database: possibilities and limits for drug utilization research. Basic Clin Pharmacol Toxicol 124(1):18–27. https://doi.org/10.1111/bcpt.13136

    Article  CAS  PubMed  Google Scholar 

  35. Kayiwa R, Kasedde H, Lubwama M, Kirabira JB, Kayondo T (2022) Occurrence and toxicological assessment of selected active pharmaceutical ingredients in effluents of pharmaceutical manufacturing plants and wastewater treatment plants in Kampala, Uganda. Water Pract Technol 17(4):852–869

    Article  Google Scholar 

  36. Larsson DGJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148(3):751–755. https://doi.org/10.1016/j.jhazmat.2007.07.008

    Article  CAS  PubMed  Google Scholar 

  37. Lübbert C et al (2017) Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens. Infection 45(4):479–491

    Article  PubMed  Google Scholar 

  38. Kleywegt S, Payne M, Ng F, Fletcher T (2019) Environmental loadings of active pharmaceutical ingredients from manufacturing facilities in Canada. Sci Total Environ 646:257–264

    Article  CAS  PubMed  Google Scholar 

  39. Bielen A et al (2017) Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Res 126:79–87

    Article  CAS  PubMed  Google Scholar 

  40. Agunbiade FO, Moodley B (2016) Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa. Environ Toxicol Chem 35(1):36–46

    Article  CAS  PubMed  Google Scholar 

  41. Thai PK et al (2018) Occurrence of antibiotic residues and antibiotic-resistant bacteria in effluents of pharmaceutical manufacturers and other sources around Hanoi, Vietnam. Sci Total Environ 645:393–400

    Article  CAS  PubMed  Google Scholar 

  42. Larsson TA, de Pedro C, Paxeus N (2007) Effluent from drug manufacturers contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755

    Article  CAS  PubMed  Google Scholar 

  43. Fick J, Söderström H, Lindberg RH, Phan C, Tysklind M, Larsson DJ (2009) Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem 28(12):2522–2527

    Article  CAS  PubMed  Google Scholar 

  44. Moreno-González R, Rodriguez-Mozaz S, Gros M, Barceló D, León VM (2015) Seasonal distribution of pharmaceuticals in marine water and sediment from a mediterranean coastal lagoon (SE Spain). Environ Res 138:326–344

    Article  PubMed  Google Scholar 

  45. Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35(5):803–814

    Article  CAS  PubMed  Google Scholar 

  46. Li D et al (2010) Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river. Appl Environ Microbiol 76(11):3444–3451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kristiansson E et al (2011) Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One 6(2):e17038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 12(7):465–478

    Article  CAS  PubMed  Google Scholar 

  49. Bengtsson-Palme J, Larsson DGJ (2016) Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ Int 86:140–149. https://doi.org/10.1016/j.envint.2015.10.015

    Article  CAS  PubMed  Google Scholar 

  50. Green RE et al (2007) Rate of decline of the oriental white-backed vulture population in India estimated from a survey of diclofenac residues in carcasses of ungulates. PloS One 2(8):e686. https://doi.org/10.1371/journal.pone.0000686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Department of Chemistry and the KNUST Central Laboratory are acknowledged for the use of their facilities for this study. The authors are grateful to Mr. Daniel Nimako Ampratwum and Mr. Benjamin Effah Dankwah of the Central Laboratory, KNUST for technical support.

Funding

This work was supported by a KNUST Research Fund (2019) Grant awarded to Lawrence Sheringham Borquaye and Godfred Darko.

Author information

Authors and Affiliations

Authors

Contributions

BAN: methodology, investigation, data curation, writing—original draft preparation, writing—reviewing and editing; JNG: methodology, investigation, data curation, writing—original draft preparation; GD: data curation, writing—reviewing and editing, formal analysis; funding acquisition, supervision; LSB: conceptualization, data curation, writing—reviewing and editing, formal analysis; funding acquisition, supervision.

Corresponding author

Correspondence to Lawrence Sheringham Borquaye.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyaaba, B.A., Gyesi, J.N., Darko, G. et al. Occurrence and Ecological Risk Assessment of Pharmaceutical Residues in Effluents from Pharmaceutical Manufacturing Facilities in Kumasi, Ghana. Chemistry Africa 6, 3131–3143 (2023). https://doi.org/10.1007/s42250-023-00703-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00703-6

Keywords

Navigation