Abstract
Background
Triazoles, a five-membered aromatic ring with three nitrogen atoms can effortlessly bind with a variety of enzymes and receptors in the biological system through non-covalent or covalent interactions and thus showed various biological activities. The research on triazole-based derivatives is a bustling topic and countless successes have been achieved. Enormously, a large number of triazole derivatives as clinical candidates or drugs have been used for the treatment of various diseases which have shown their progress and wide potential as medicinal agents. The diverse role of the triazole ring has evoked the interest of researchers in the development of novel triazole derivatives with promising biological activities.
Main Text
This review mainly covers various pharmacological activities such as anticancer, antitubercular, antifungal, anti-inflammatory, antimicrobial, anticonvulsant, anti-HIV, antimalarial, etc.
Conclusion
This review encourages new thoughts in the quest for the rational design of new more potent and less toxic triazole derivatives as medicinal drugs.
Similar content being viewed by others
Data availability
All data generated during this study are included in this published article.
Abbreviations
- PANC 1:
-
Human pancreatic cancer cell line
- EGRF:
-
Epidermal growth factor receptor
- DS-TB:
-
Drug-susceptible tuberculosis
- DR-TB:
-
Drug resistance tuberculosis
- MES:
-
Maximal electroshock-induced seizure
- PAMPA:
-
Parallel artificial membrane permeability assay
- SCGE:
-
Single cell gel electrophoresis
- DHFR:
-
Dihydrofolate reductase
- DPPH:
-
2,2-Diphenyl-1-picrylhydrazyl
- COX:
-
Cyclooxygenase
References
Kashyap A, Silakari O (2018) Key heterocycle cores for designing multitargeting molecules. Elseveir, pp 323–342
Xu Z, Zhao SJ, Liu Y (2019). Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2019.111700
Abdelli A, Azzouni S, Plais R, Gaucher A, Efrit ML, Prim D (2021). Tetrahedron Lett. https://doi.org/10.1016/j.tetlet.2021.153518
Keri RS, Patil SA, Budagumpi S, Nagaraja BM (2015). Chem Biol Drug Des. https://doi.org/10.1111/cbdd.12527
Strzelecka M, Świątek P (2021). Pharmaceuticals. https://doi.org/10.3390/ph14030224
Sarigol D, Uzgoren-Baran A, Tel BC, Somuncuoglu EI, Kazkayasi I, Ozadali-Sari K, Unsal-Tan O, Okay G, Ertan M, Tozkoparan B (2015). Bioorg Med Chem. https://doi.org/10.1016/j.bmc.2015.03.049
Bulut N, Kocyigit UM, Gecibesler IH, Dastan T, Karci H, Taslimi P, Durna Dastan S, Gulcin I, Cetin A (2018). J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.22006
Aneja R, Grigoletto A, Nangarlia A, Rashad AA, Wrenn S, Jacobson JM, Pasut G, Chaiken I (2019). J Pept Sci. https://doi.org/10.1002/psc.3155
Song MX, Deng XQ (2018). J Enzyme Inhib Med Chem. https://doi.org/10.1080/14756366.2017.1423068
Chu XM, Wang C, Wang WL, Liang LL, Liu W, Gong KK, Sun KL (2019). Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2019.01.047
Reinberg S (2008) Health day news. World Health Organization
Rain S (2009) Info NIAC. International Health Organization
Gurney H (1996). J Clin Oncol. https://doi.org/10.1200/JCO.1996.14.9.2590
Gibbs JB (2000). Science. https://doi.org/10.1126/science.287.5460.1969
Naresh Kumar R, Jitender Dev G, Ravikumar N, Krishna Swaroop D, Debanjan B, Bharath G, Narsaiah B, Nishant Jain S, Gangagni-Rao A (2016). Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2016.04.038
Kumbhare RM, Dadmal TL, Ramaiah MJ, Kishore KSV, Pushpa Valli SN, Tiwari SK, Appalanaidu K, Rao YK, Bhadra MP (2015). Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2014.11.083
Kumar Thatipamula R, Narsimha S, Battula K, Chary E, Mamidala RR, Reddy NV (2017). J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2015.12.001
Ruddarraju RR, Murugulla AC, Kotla R, Tirumalasetty MCB, Wudayagiri R, Donthabakthuni S, Maroju R (2016). MedChemComm. https://doi.org/10.1039/C6MD00479B
Wei G, Luan W, Wang S, Cui S, Li F, Liu Y, Liu Y, Cheng M (2015). Org Biomol Chem. https://doi.org/10.1039/C4OB01605J
Bębenek E, Kadela-Tomanek M, Chrobak E, Latocha M, Boryczka S (2018). Med Chem Res. https://doi.org/10.1007/s00044-018-2213-x
El-Sherief HAM, Youssif BGM, Bukhari SNA, Abdel-Aziz M, Abdel-Rahman HM (2018). Bioorg Chem. https://doi.org/10.1016/j.bioorg.2017.12.013
Lakkakula R, Roy A, Mukkanti K, Sridhar G (2019). Russ J Gen Chem. https://doi.org/10.1134/S1070363219040315
Legigan T, Migianu-Griffoni E, Redouane MA, Descamps A, Deschamp J, Gager O, Monteil M, Barbault F, Lecouvey M (2021). Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2021.113241
Şahin I, Özgeriş FB, Köse M, Bakan E, Tümer F (2021). J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.130042
Shaikh MH, Subhedar DD, Nawale L, Sarkar D, Khan FAK, Sangshetti JN, Shingate BB (2015). MedChemComm. https://doi.org/10.1039/C5MD00057B
Shaikh MH, Subhedar DD, Arkile M, Khedkar VM, Jadhav N, Sarkar D, Shingate BB (2016). Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2015.11.071
Shaikh MH, Subhedar DD, Shingate BB, Khan FAK, Sangshetti JN, Khedkar VM, Nawale L, Sarkar D, Navale GR, Shinde SS (2016). Med Chem Res. https://doi.org/10.1007/s00044-016-1519-9
Aziz Ali A, Gogoi D, Chaliha AK, Buragohain AK, Trivedi P, Saikia PJ, Gehlot PS, Kumar A, Chaturvedi V, Sarma D (2017). Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2017.07.008
Ramprasad J, Kumar-Sthalam V, Linga Murthy Thampunuri R, Bhukya S, Ummanni R, Balasubramanian S, Pabbaraja S (2019). Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2019.126671
Phatak PS, Bakale RD, Dhumal ST, Dahiwade LK, Choudhari PB, Siva Krishna V, Sriram D, Haval KP (2019). Synth Commun. https://doi.org/10.1080/00397911.2019.1614630
Nandikolla A, Srinivasarao S, Khetmalis YM, Kumar BK, Murugesan S, Shetye G, Ma R, Franzblau SG, Sekhar KVGC (2021). Toxicol in Vitro. https://doi.org/10.1016/j.tiv.2021.105137
Kumar CP, Prathibha BS, Prasad KNN, Raghu MS, Prashanth MK, Jayanna BK, Alharthi FA, Chandrasekhar S, Revanasiddappa HD, Kumar KY (2021). Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2021.127810
Xu K, Huang L, Xu Z, Wang Y, Bai G, Wu Q, Wang X, Yu S, Jiang Y (2015). Drug Des Devel Ther. https://doi.org/10.2147/DDDT.S74989
González-Calderón D, Mejía-Dionicio MG, Morales-Reza MA, Ramírez-Villalva A, Morales-Rodríguez M, Jauregui-Rodríguez B, Díaz-Torres E, González-Romero C, Fuentes-Benítes A (2016). Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2016.02.013
Ramírez-Villalva A, González-Calderón D, Rojas-García RI, González-Romero C, Tamaríz-Mascarúa J, Morales-Rodríguez M, Zavala-Segovia N, Fuentes-Benítes A (2017). MedChemComm. https://doi.org/10.1039/C7MD00442G
Sadeghpour H, Khabnadideh S, Zomorodian K, Pakshir K, Hoseinpour K, Javid N, Faghih-Mirzaei E, Rezaei Z (2017). Molecules. https://doi.org/10.3390/molecules22071150
Wu J, Ni T, Chai X, Wang T, Wang H, Chen J, Jin Y, Zhang D, Yu S, Jiang Y (2018). Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2017.10.081
Jin R, Liu J, Zhang G, Li J, Zhang S, Guo H (2018). Chem Biodivers. https://doi.org/10.1002/cbdv.201800263
Zoidis G, Kritsi E, Lecinska P, Ivanov M, Zoumpoulakis P, Sokovic M, Catto M (2021). ChemMedChem. https://doi.org/10.1002/cmdc.202000312
Nehra N, Tittal RK, Vikas DG, Lal K (2021). J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.131013
Qi L, Li MC, Bai JC, Ren YH, Ma HX (2021). Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2021.127902
Kim TW, Yong Y, Shin SY, Jung H, Park KH, Lee YH, Lim Y, Jung KY (2015). Bioorg Chem. https://doi.org/10.1016/j.bioorg.2015.01.003
Kumar AK, Sunitha V, Shankar B, Ramesh M, Krishna TM, Jalapathi P (2016). Russ J Gen Chem. https://doi.org/10.1134/S1070363216050297
Chouaïb K, Delemasure S, Dutartre P, Jannet HB (2016). J Enzyme Inhib Med Chem. https://doi.org/10.1080/14756366.2016.1193733
Toma A, Mogoşan C, Vlase L, Leonte D, Zaharia V (2017). Med Chem Res. https://doi.org/10.1007/s00044-017-1959-x
Naaz F, Preeti Pallavi MC, Shafi S, Mulakayala N, Shahar-Yar M, Sampath-Kumar HM (2018). Bioorg Chem. https://doi.org/10.1016/j.bioorg.2018.07.029
Zhang TY, Li CS, Cao LT, Bai XQ, Zhao DH, Sun SM (2021). Mol Divers. https://doi.org/10.1007/s11030-021-10236-0
Abdelazeem AH, El-Din AGS, Arab HH, El-Saadi MT, El-Moghazy SM, Amin NH (2021). J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.130565
Kadambar AK, Kalluraya B, Singh S, Agarwal V, Revanasiddappa BC (2021). J Het Chem. https://doi.org/10.1002/jhet.4172
Jadhav RP, Raundal HN, Patil AA, Bobade VD (2017). J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2015.03.003
Fan Z, Shi J, Bao X (2018). Mol Divers. https://doi.org/10.1007/s11030-018-9821-8
Ruddarraju RR, Murugulla AC, Kotla R, Chandra Babu Tirumalasetty M, Wudayagiri R, Donthabakthuni S, Maroju R, Baburao K, Parasa LS (2016). Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2016.07.024
López-Rojas P, Janeczko M, Kubiński K, Amesty A, Masłyk M, Estévez-Braun A (2018). Molecules. https://doi.org/10.3390/molecules23010199
Gondru R, Kanugala S, Raj S, Kumar CG, Pasupuleti M, Banothu J, bavantula R (2021). Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2020.127746
Amin NH, El-Saadi MT, Ibrahim AA, Abdel-Rahman HM (2021). Bioorg Chem. https://doi.org/10.1016/j.bioorg.2021.104841
Yadav MK, Tripathi L, Goswami D (2017). Saudi J Med Pharm Sci. https://doi.org/10.21276/sjmps.2017.3.8
Dehestani L, Ahangar N, Hashemi SM, Irannejad H, Honarchian Masihi P, Shakiba A, Emami S (2018). Bioorg Chem. https://doi.org/10.1016/j.bioorg.2018.03.001
Abuelhassan AH, Badran MM, Hassan HA, Abdelhamed D, Elnabtity S, Aly OM (2018). Med Chem Res. https://doi.org/10.1007/s00044-017-2114-4
Kaproń B, Łuszczki JJ, Płazińska A, Siwek A, Karcz T, Gryboś A, Nowak G, Makuch-Kocka A, Walczak K, Langner E, Szalast K, Marciniak S, Paczkowska M, Cielecka-Piontek J, Ciesla LM, Plech T (2019). Eur J Pharm Sci. https://doi.org/10.1016/j.ejps.2018.12.018
Song M, Yan R, Zhang Y, Guo D, Zhou N, Deng X (2020). J Enzyme Inhib Med Chem. https://doi.org/10.1080/14756366.2020.1774573
Lingappa M, Guruswamy V, Bantal V (2020) Synthesis and characterization of 4-amino-4H-1, 2, 4-triazole derivatives: anticonvulsant activity. Cur Chem Lett 10(1):33–42. https://doi.org/10.5267/j.ccl.2020.7.002
Kaproń B, Łuszczki JJ, Siwek A, Karcz T, Nowak G, Zagaja M, Andres-Mach M, Stasiłowicz A, Cielecka-Piontek J, Kocki J, Plech T (2020) Preclinical evaluation of 1,2,4-triazole-based compounds targeting voltage-gated sodium channels (VGSCs) as promising anticonvulsant drug candidates. Bioorg Chem 94:103355. https://doi.org/10.1016/j.bioorg.2019.103355
Mohammed I, Kummetha IR, Singh G, Sharova N, Lichinchi G, Dang J, Stevenson M, Rana TM (2016) 1, 2, 3-triazoles as amide bioisosteres: discovery of a new class of potent HIV-1 Vif antagonists. J Med Chem 59(16):7677–7682. https://doi.org/10.1021/acs.jmedchem.6b00247
Tian Y, Liu Z, Liu J, Huang B, Kang D, Zhang H, De Clercq E, Daelemans D, Pannecouque C, Lee KH, Chen CH, Zhan P, Liu X (2018) Targeting the entrance channel of NNIBP: discovery of diarylnicotinamide 1,4-disubstituted 1,2,3-triazoles as novel HIV-1 NNRTIs with high potency against wild-type and E138K mutant virus. Eur J Med Chem 151:339–350. https://doi.org/10.1016/j.ejmech.2018.03.059
Zhou Z, Liu T, Wu G, Kang D, Fu Z, Wang Z, De Clercq E, Pannecouque C, Zhan P, Liu X (2019) Targeting the hydrophobic channel of NNIBP: discovery of novel 1,2,3-triazole-derived diarylpyrimidines as novel HIV-1 NNRTIs with high potency against wild-type and K103N mutant virus. Org Biomol Chem 17(12):3202–3217. https://doi.org/10.1039/C9OB00032A
Jiang X, Wu G, Zalloum WA, Meuser ME, Dick A, Sun L, Chen CH, Kang D, Jing L, Jia R, Cocklin S, Lee KH, Liu X, Zhan P (2019) Discovery of novel 1,4-disubstituted 1,2,3-triazole phenylalanine derivatives as HIV-1 capsid inhibitors. RSC Adv 9(50):28961–28986. https://doi.org/10.1039/C9RA05869A
Sun L, Huang T, Dick A, Meuser ME, Zalloum WA, Chen CH, Ding X, Gao P, Cocklin S, Lee KH, Zhan P, Liu X (2020) Design, synthesis and structure-activity relationships of 4-phenyl-1H-1,2,3-triazole phenylalanine derivatives as novel HIV-1 capsid inhibitors with promising antiviral activities. Eur J Med Chem 190:112085. https://doi.org/10.1016/j.ejmech.2020.112085
Faidallah HM, Panda SS, Serrano JC, Girgis AS, Khan KA, Alamry KA, Therathanakorn T, Meyers MJ, Sverdrup FM, Eickhoff CS, Getchell SG, Katritzky AR (2016) Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates. Bioorg Med Chem 24(16):3527–3539. https://doi.org/10.1016/j.bmc.2016.05.060
Thakkar SS, Thakor P, Doshi H, Ray A (2017) 1,2,4-Triazole and 1,3,4-oxadiazole analogues: synthesis, MO studies, in silico molecular docking studies, antimalarial as DHFR inhibitor and antimicrobial activities. Bioorg Med Chem 25(15):4064–4075. https://doi.org/10.1016/j.bmc.2017.05.054
Rossier J, Nasiri-Sovari S, Pavic A, Vojnovic S, Stringer T, Bättig S, Smith GS, Nikodinovic-Runic J, Zobi F (2019) Antiplasmodial activity and in vivo bio-distribution of chloroquine molecules released with a 4-(4-ethynylphenyl)-triazole moiety from organometallo-cobalamins. Molecules 24(12):2310. https://doi.org/10.3390/molecules24122310
Yadav N, Agarwal D, Kumar S, Dixit AK, Gupta RD, Awasthi SK (2018) In vitro antiplasmodial efficacy of synthetic coumarin-triazole analogs. Eur J Med Chem 145:735–745. https://doi.org/10.1016/j.ejmech.2018.01.017
Sharma B, Kaur S, Legac J, Rosenthal PJ, Kumar V (2020) Synthesis, anti-plasmodial and cytotoxic evaluation of 1H–1,2,3-triazole/acyl hydrazide integrated tetrahydro-β-carboline-4-aminoquinoline conjugates. Bioorg Med Chem Lett 30(2):126810. https://doi.org/10.1016/j.bmcl.2019.126810
Santos BMD, Gonzaga DTG, Da Silva FC, Ferreira VF, Garcia CRS (2020) Plasmodium falciparum knockout for the GPCR-Like PfSR25 receptor displays greater susceptibility to 1,2,3-triazole compounds that block malaria parasite development. Biomolecules 10(8):1197. https://doi.org/10.3390/biom10081197
Ibrahim ZYU, Uzairu A, Shallangwa GA, Abechi SE (2021) Molecular modeling and design of some β-amino alcohol grafted 1, 4, 5-trisubstituted 1, 2, 3-triazoles derivatives against chloroquine sensitive, 3D7 strain of Plasmodium falciparum. Heliyon 7(1):05924. https://doi.org/10.1016/j.heliyon.2021.e05924
Maddila S, Momin M, Gorle S, Palakondu L, Jonnalagadda SB (2015) Synthesis and antioxidant evaluation of novel phenothiazine linked substitutedbenzylideneamino-1, 2, 4-triazole derivatives. J Chil Chem Soc 60(2):2919–2923. https://doi.org/10.4067/S0717-97072015000200012
Cetin A, Geçibesler IH (2015) Evaluation as antioxidant agents of 1, 2, 4-triazole derivatives: Effects of essential functional groups. J Appl Pharm Sci 5(6):120–126. https://doi.org/10.7324/JAPS.2015.50620
Karrouchi K, Chemlal L, Taoufik J, Cherrah Y, Radi S, El Abbes Faouzi M, Ansar M (2016) Synthesis, antioxidant and analgesic activities of Schiff bases of 4-amino-1,2,4-triazole derivatives containing a pyrazole moiety. Ann Pharm Fr 74(6):431–438. https://doi.org/10.1016/j.pharma.2016.03.005
Kwak MY, Rhee JS (1992) Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production. Biotechnol Bioeng 39(9):903–906. https://doi.org/10.1002/bit.260390904
Kotani T, Ichimoto I, Tatsumi C, Fujita T (1976) Bacteriostatic activities and metal chelation of kojic acid analogs. Agric Biol Chem 40(4):765–770. https://doi.org/10.1080/00021369.1976.10862125
Kayahara H, Shibata NASAKT, Maeda H, Kotani T, Ichimoto I (1990) Amino acid and peptide derivatives of kojic acid and their antifungal properties. Agric Biol Chem 54(9):2441–2442. https://doi.org/10.1271/bbb1961.54.2441
Saraei M, Ghasemi Z, Dehghan G, Hormati M, Ojaghi K (2017) Synthesis of some novel 1, 2, 3-triazole derivatives containing kojic acid moiety and evaluation for their antioxidant activity. Monatshefte Für Chem-Chem Mon 148(5):917–923. https://doi.org/10.1007/s00706-016-1844-1
Ashok D, Gundu S, Aamate VK, Devulapally MG (2018) Microwave-assisted synthesis, antioxidant and antimicrobial evaluation of 2-indolinone-based bis-1,2,3-triazole derivatives. Mol Divers 22(1):57–70. https://doi.org/10.1007/s11030-017-9791-2
Jalaja R, Leela SG, Valmiki PK, Salfeena CTF, Ashitha KT, Krishna-Rao VRD, Nair MS, Gopalan RK, Somappa SB (2018) Discovery of natural product derived labdane appended triazoles as potent pancreatic lipase inhibitors. ACS Med Chem Lett 9(7):662–666. https://doi.org/10.1021/acsmedchemlett.8b00109
Ye GJ, Lan T, Huang ZX, Cheng XN, Cai CY, Ding SM, Xie ML, Wang B (2019) Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-glucosidase inhibition and glucose uptake promotion. Eur J Med Chem 177:362–373. https://doi.org/10.1016/j.ejmech.2019.05.045
Holanda VN, Da Silva WV, De Nascimento PH, Silva SRB, Cabral-Filho PE, De Oliveira-Assis SP, Da Silva CA, De Oliveira RN, De Figueiredo RCBQ, De Menezes-Lima VL (2020) Antileishmanial activity of 4-phenyl-1-[2-(phthalimido-2-yl) ethyl]-1H-1, 2, 3-triazole (PT4) derivative on Leishmania amazonensis and Leishmania braziliensis: in silico ADMET, in vitro activity, docking and molecular dynamic simulations. Bioorg Chem 105:104437. https://doi.org/10.1016/j.bioorg.2020.104437
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shah, B.M., Modi, P. & Trivedi, P. Recent Investigation on Synthetic ‘Triazoles’ Scaffold as Potential Pharmacological Agents: A Comprehensive Survey. Chemistry Africa 6, 1679–1697 (2023). https://doi.org/10.1007/s42250-023-00617-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42250-023-00617-3