Skip to main content
Log in

Recent Investigation on Synthetic ‘Triazoles’ Scaffold as Potential Pharmacological Agents: A Comprehensive Survey

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Background

Triazoles, a five-membered aromatic ring with three nitrogen atoms can effortlessly bind with a variety of enzymes and receptors in the biological system through non-covalent or covalent interactions and thus showed various biological activities. The research on triazole-based derivatives is a bustling topic and countless successes have been achieved. Enormously, a large number of triazole derivatives as clinical candidates or drugs have been used for the treatment of various diseases which have shown their progress and wide potential as medicinal agents. The diverse role of the triazole ring has evoked the interest of researchers in the development of novel triazole derivatives with promising biological activities.

Main Text

This review mainly covers various pharmacological activities such as anticancer, antitubercular, antifungal, anti-inflammatory, antimicrobial, anticonvulsant, anti-HIV, antimalarial, etc.

Conclusion

This review encourages new thoughts in the quest for the rational design of new more potent and less toxic triazole derivatives as medicinal drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated during this study are included in this published article.

Abbreviations

PANC 1:

Human pancreatic cancer cell line

EGRF:

Epidermal growth factor receptor

DS-TB:

Drug-susceptible tuberculosis

DR-TB:

Drug resistance tuberculosis

MES:

Maximal electroshock-induced seizure

PAMPA:

Parallel artificial membrane permeability assay

SCGE:

Single cell gel electrophoresis

DHFR:

Dihydrofolate reductase

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

COX:

Cyclooxygenase

References

  1. Kashyap A, Silakari O (2018) Key heterocycle cores for designing multitargeting molecules. Elseveir, pp 323–342

    Book  Google Scholar 

  2. Xu Z, Zhao SJ, Liu Y (2019). Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2019.111700

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abdelli A, Azzouni S, Plais R, Gaucher A, Efrit ML, Prim D (2021). Tetrahedron Lett. https://doi.org/10.1016/j.tetlet.2021.153518

    Article  Google Scholar 

  4. Keri RS, Patil SA, Budagumpi S, Nagaraja BM (2015). Chem Biol Drug Des. https://doi.org/10.1111/cbdd.12527

    Article  PubMed  Google Scholar 

  5. Strzelecka M, Świątek P (2021). Pharmaceuticals. https://doi.org/10.3390/ph14030224

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sarigol D, Uzgoren-Baran A, Tel BC, Somuncuoglu EI, Kazkayasi I, Ozadali-Sari K, Unsal-Tan O, Okay G, Ertan M, Tozkoparan B (2015). Bioorg Med Chem. https://doi.org/10.1016/j.bmc.2015.03.049

    Article  PubMed  Google Scholar 

  7. Bulut N, Kocyigit UM, Gecibesler IH, Dastan T, Karci H, Taslimi P, Durna Dastan S, Gulcin I, Cetin A (2018). J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.22006

    Article  PubMed  Google Scholar 

  8. Aneja R, Grigoletto A, Nangarlia A, Rashad AA, Wrenn S, Jacobson JM, Pasut G, Chaiken I (2019). J Pept Sci. https://doi.org/10.1002/psc.3155

    Article  PubMed  PubMed Central  Google Scholar 

  9. Song MX, Deng XQ (2018). J Enzyme Inhib Med Chem. https://doi.org/10.1080/14756366.2017.1423068

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chu XM, Wang C, Wang WL, Liang LL, Liu W, Gong KK, Sun KL (2019). Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2019.01.047

    Article  PubMed  Google Scholar 

  11. Reinberg S (2008) Health day news. World Health Organization

    Google Scholar 

  12. Rain S (2009) Info NIAC. International Health Organization

    Google Scholar 

  13. Gurney H (1996). J Clin Oncol. https://doi.org/10.1200/JCO.1996.14.9.2590

    Article  PubMed  Google Scholar 

  14. Gibbs JB (2000). Science. https://doi.org/10.1126/science.287.5460.1969

    Article  PubMed  PubMed Central  Google Scholar 

  15. Naresh Kumar R, Jitender Dev G, Ravikumar N, Krishna Swaroop D, Debanjan B, Bharath G, Narsaiah B, Nishant Jain S, Gangagni-Rao A (2016). Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2016.04.038

    Article  PubMed  Google Scholar 

  16. Kumbhare RM, Dadmal TL, Ramaiah MJ, Kishore KSV, Pushpa Valli SN, Tiwari SK, Appalanaidu K, Rao YK, Bhadra MP (2015). Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2014.11.083

    Article  PubMed  Google Scholar 

  17. Kumar Thatipamula R, Narsimha S, Battula K, Chary E, Mamidala RR, Reddy NV (2017). J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2015.12.001

    Article  Google Scholar 

  18. Ruddarraju RR, Murugulla AC, Kotla R, Tirumalasetty MCB, Wudayagiri R, Donthabakthuni S, Maroju R (2016). MedChemComm. https://doi.org/10.1039/C6MD00479B

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wei G, Luan W, Wang S, Cui S, Li F, Liu Y, Liu Y, Cheng M (2015). Org Biomol Chem. https://doi.org/10.1039/C4OB01605J

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bębenek E, Kadela-Tomanek M, Chrobak E, Latocha M, Boryczka S (2018). Med Chem Res. https://doi.org/10.1007/s00044-018-2213-x

    Article  PubMed  PubMed Central  Google Scholar 

  21. El-Sherief HAM, Youssif BGM, Bukhari SNA, Abdel-Aziz M, Abdel-Rahman HM (2018). Bioorg Chem. https://doi.org/10.1016/j.bioorg.2017.12.013

    Article  PubMed  Google Scholar 

  22. Lakkakula R, Roy A, Mukkanti K, Sridhar G (2019). Russ J Gen Chem. https://doi.org/10.1134/S1070363219040315

    Article  Google Scholar 

  23. Legigan T, Migianu-Griffoni E, Redouane MA, Descamps A, Deschamp J, Gager O, Monteil M, Barbault F, Lecouvey M (2021). Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2021.113241

    Article  PubMed  Google Scholar 

  24. Şahin I, Özgeriş FB, Köse M, Bakan E, Tümer F (2021). J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.130042

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shaikh MH, Subhedar DD, Nawale L, Sarkar D, Khan FAK, Sangshetti JN, Shingate BB (2015). MedChemComm. https://doi.org/10.1039/C5MD00057B

    Article  Google Scholar 

  26. Shaikh MH, Subhedar DD, Arkile M, Khedkar VM, Jadhav N, Sarkar D, Shingate BB (2016). Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2015.11.071

    Article  PubMed  Google Scholar 

  27. Shaikh MH, Subhedar DD, Shingate BB, Khan FAK, Sangshetti JN, Khedkar VM, Nawale L, Sarkar D, Navale GR, Shinde SS (2016). Med Chem Res. https://doi.org/10.1007/s00044-016-1519-9

    Article  PubMed  PubMed Central  Google Scholar 

  28. Aziz Ali A, Gogoi D, Chaliha AK, Buragohain AK, Trivedi P, Saikia PJ, Gehlot PS, Kumar A, Chaturvedi V, Sarma D (2017). Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2017.07.008

    Article  PubMed  Google Scholar 

  29. Ramprasad J, Kumar-Sthalam V, Linga Murthy Thampunuri R, Bhukya S, Ummanni R, Balasubramanian S, Pabbaraja S (2019). Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2019.126671

    Article  PubMed  Google Scholar 

  30. Phatak PS, Bakale RD, Dhumal ST, Dahiwade LK, Choudhari PB, Siva Krishna V, Sriram D, Haval KP (2019). Synth Commun. https://doi.org/10.1080/00397911.2019.1614630

    Article  Google Scholar 

  31. Nandikolla A, Srinivasarao S, Khetmalis YM, Kumar BK, Murugesan S, Shetye G, Ma R, Franzblau SG, Sekhar KVGC (2021). Toxicol in Vitro. https://doi.org/10.1016/j.tiv.2021.105137

    Article  PubMed  Google Scholar 

  32. Kumar CP, Prathibha BS, Prasad KNN, Raghu MS, Prashanth MK, Jayanna BK, Alharthi FA, Chandrasekhar S, Revanasiddappa HD, Kumar KY (2021). Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2021.127810

    Article  PubMed  Google Scholar 

  33. Xu K, Huang L, Xu Z, Wang Y, Bai G, Wu Q, Wang X, Yu S, Jiang Y (2015). Drug Des Devel Ther. https://doi.org/10.2147/DDDT.S74989

    Article  PubMed  PubMed Central  Google Scholar 

  34. González-Calderón D, Mejía-Dionicio MG, Morales-Reza MA, Ramírez-Villalva A, Morales-Rodríguez M, Jauregui-Rodríguez B, Díaz-Torres E, González-Romero C, Fuentes-Benítes A (2016). Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2016.02.013

    Article  PubMed  Google Scholar 

  35. Ramírez-Villalva A, González-Calderón D, Rojas-García RI, González-Romero C, Tamaríz-Mascarúa J, Morales-Rodríguez M, Zavala-Segovia N, Fuentes-Benítes A (2017). MedChemComm. https://doi.org/10.1039/C7MD00442G

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sadeghpour H, Khabnadideh S, Zomorodian K, Pakshir K, Hoseinpour K, Javid N, Faghih-Mirzaei E, Rezaei Z (2017). Molecules. https://doi.org/10.3390/molecules22071150

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wu J, Ni T, Chai X, Wang T, Wang H, Chen J, Jin Y, Zhang D, Yu S, Jiang Y (2018). Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2017.10.081

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jin R, Liu J, Zhang G, Li J, Zhang S, Guo H (2018). Chem Biodivers. https://doi.org/10.1002/cbdv.201800263

    Article  PubMed  Google Scholar 

  39. Zoidis G, Kritsi E, Lecinska P, Ivanov M, Zoumpoulakis P, Sokovic M, Catto M (2021). ChemMedChem. https://doi.org/10.1002/cmdc.202000312

    Article  PubMed  Google Scholar 

  40. Nehra N, Tittal RK, Vikas DG, Lal K (2021). J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.131013

    Article  Google Scholar 

  41. Qi L, Li MC, Bai JC, Ren YH, Ma HX (2021). Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2021.127902

    Article  PubMed  Google Scholar 

  42. Kim TW, Yong Y, Shin SY, Jung H, Park KH, Lee YH, Lim Y, Jung KY (2015). Bioorg Chem. https://doi.org/10.1016/j.bioorg.2015.01.003

    Article  PubMed  Google Scholar 

  43. Kumar AK, Sunitha V, Shankar B, Ramesh M, Krishna TM, Jalapathi P (2016). Russ J Gen Chem. https://doi.org/10.1134/S1070363216050297

    Article  Google Scholar 

  44. Chouaïb K, Delemasure S, Dutartre P, Jannet HB (2016). J Enzyme Inhib Med Chem. https://doi.org/10.1080/14756366.2016.1193733

    Article  PubMed  Google Scholar 

  45. Toma A, Mogoşan C, Vlase L, Leonte D, Zaharia V (2017). Med Chem Res. https://doi.org/10.1007/s00044-017-1959-x

    Article  Google Scholar 

  46. Naaz F, Preeti Pallavi MC, Shafi S, Mulakayala N, Shahar-Yar M, Sampath-Kumar HM (2018). Bioorg Chem. https://doi.org/10.1016/j.bioorg.2018.07.029

    Article  PubMed  Google Scholar 

  47. Zhang TY, Li CS, Cao LT, Bai XQ, Zhao DH, Sun SM (2021). Mol Divers. https://doi.org/10.1007/s11030-021-10236-0

    Article  PubMed  Google Scholar 

  48. Abdelazeem AH, El-Din AGS, Arab HH, El-Saadi MT, El-Moghazy SM, Amin NH (2021). J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.130565

    Article  Google Scholar 

  49. Kadambar AK, Kalluraya B, Singh S, Agarwal V, Revanasiddappa BC (2021). J Het Chem. https://doi.org/10.1002/jhet.4172

    Article  Google Scholar 

  50. Jadhav RP, Raundal HN, Patil AA, Bobade VD (2017). J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2015.03.003

    Article  Google Scholar 

  51. Fan Z, Shi J, Bao X (2018). Mol Divers. https://doi.org/10.1007/s11030-018-9821-8

    Article  PubMed  Google Scholar 

  52. Ruddarraju RR, Murugulla AC, Kotla R, Chandra Babu Tirumalasetty M, Wudayagiri R, Donthabakthuni S, Maroju R, Baburao K, Parasa LS (2016). Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2016.07.024

    Article  PubMed  Google Scholar 

  53. López-Rojas P, Janeczko M, Kubiński K, Amesty A, Masłyk M, Estévez-Braun A (2018). Molecules. https://doi.org/10.3390/molecules23010199

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gondru R, Kanugala S, Raj S, Kumar CG, Pasupuleti M, Banothu J, bavantula R (2021). Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2020.127746

    Article  PubMed  Google Scholar 

  55. Amin NH, El-Saadi MT, Ibrahim AA, Abdel-Rahman HM (2021). Bioorg Chem. https://doi.org/10.1016/j.bioorg.2021.104841

    Article  PubMed  Google Scholar 

  56. Yadav MK, Tripathi L, Goswami D (2017). Saudi J Med Pharm Sci. https://doi.org/10.21276/sjmps.2017.3.8

    Article  Google Scholar 

  57. Dehestani L, Ahangar N, Hashemi SM, Irannejad H, Honarchian Masihi P, Shakiba A, Emami S (2018). Bioorg Chem. https://doi.org/10.1016/j.bioorg.2018.03.001

    Article  PubMed  Google Scholar 

  58. Abuelhassan AH, Badran MM, Hassan HA, Abdelhamed D, Elnabtity S, Aly OM (2018). Med Chem Res. https://doi.org/10.1007/s00044-017-2114-4

    Article  Google Scholar 

  59. Kaproń B, Łuszczki JJ, Płazińska A, Siwek A, Karcz T, Gryboś A, Nowak G, Makuch-Kocka A, Walczak K, Langner E, Szalast K, Marciniak S, Paczkowska M, Cielecka-Piontek J, Ciesla LM, Plech T (2019). Eur J Pharm Sci. https://doi.org/10.1016/j.ejps.2018.12.018

    Article  PubMed  Google Scholar 

  60. Song M, Yan R, Zhang Y, Guo D, Zhou N, Deng X (2020). J Enzyme Inhib Med Chem. https://doi.org/10.1080/14756366.2020.1774573

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lingappa M, Guruswamy V, Bantal V (2020) Synthesis and characterization of 4-amino-4H-1, 2, 4-triazole derivatives: anticonvulsant activity. Cur Chem Lett 10(1):33–42. https://doi.org/10.5267/j.ccl.2020.7.002

    Article  Google Scholar 

  62. Kaproń B, Łuszczki JJ, Siwek A, Karcz T, Nowak G, Zagaja M, Andres-Mach M, Stasiłowicz A, Cielecka-Piontek J, Kocki J, Plech T (2020) Preclinical evaluation of 1,2,4-triazole-based compounds targeting voltage-gated sodium channels (VGSCs) as promising anticonvulsant drug candidates. Bioorg Chem 94:103355. https://doi.org/10.1016/j.bioorg.2019.103355

    Article  CAS  PubMed  Google Scholar 

  63. Mohammed I, Kummetha IR, Singh G, Sharova N, Lichinchi G, Dang J, Stevenson M, Rana TM (2016) 1, 2, 3-triazoles as amide bioisosteres: discovery of a new class of potent HIV-1 Vif antagonists. J Med Chem 59(16):7677–7682. https://doi.org/10.1021/acs.jmedchem.6b00247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tian Y, Liu Z, Liu J, Huang B, Kang D, Zhang H, De Clercq E, Daelemans D, Pannecouque C, Lee KH, Chen CH, Zhan P, Liu X (2018) Targeting the entrance channel of NNIBP: discovery of diarylnicotinamide 1,4-disubstituted 1,2,3-triazoles as novel HIV-1 NNRTIs with high potency against wild-type and E138K mutant virus. Eur J Med Chem 151:339–350. https://doi.org/10.1016/j.ejmech.2018.03.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou Z, Liu T, Wu G, Kang D, Fu Z, Wang Z, De Clercq E, Pannecouque C, Zhan P, Liu X (2019) Targeting the hydrophobic channel of NNIBP: discovery of novel 1,2,3-triazole-derived diarylpyrimidines as novel HIV-1 NNRTIs with high potency against wild-type and K103N mutant virus. Org Biomol Chem 17(12):3202–3217. https://doi.org/10.1039/C9OB00032A

    Article  CAS  PubMed  Google Scholar 

  66. Jiang X, Wu G, Zalloum WA, Meuser ME, Dick A, Sun L, Chen CH, Kang D, Jing L, Jia R, Cocklin S, Lee KH, Liu X, Zhan P (2019) Discovery of novel 1,4-disubstituted 1,2,3-triazole phenylalanine derivatives as HIV-1 capsid inhibitors. RSC Adv 9(50):28961–28986. https://doi.org/10.1039/C9RA05869A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun L, Huang T, Dick A, Meuser ME, Zalloum WA, Chen CH, Ding X, Gao P, Cocklin S, Lee KH, Zhan P, Liu X (2020) Design, synthesis and structure-activity relationships of 4-phenyl-1H-1,2,3-triazole phenylalanine derivatives as novel HIV-1 capsid inhibitors with promising antiviral activities. Eur J Med Chem 190:112085. https://doi.org/10.1016/j.ejmech.2020.112085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Faidallah HM, Panda SS, Serrano JC, Girgis AS, Khan KA, Alamry KA, Therathanakorn T, Meyers MJ, Sverdrup FM, Eickhoff CS, Getchell SG, Katritzky AR (2016) Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates. Bioorg Med Chem 24(16):3527–3539. https://doi.org/10.1016/j.bmc.2016.05.060

    Article  CAS  PubMed  Google Scholar 

  69. Thakkar SS, Thakor P, Doshi H, Ray A (2017) 1,2,4-Triazole and 1,3,4-oxadiazole analogues: synthesis, MO studies, in silico molecular docking studies, antimalarial as DHFR inhibitor and antimicrobial activities. Bioorg Med Chem 25(15):4064–4075. https://doi.org/10.1016/j.bmc.2017.05.054

    Article  CAS  PubMed  Google Scholar 

  70. Rossier J, Nasiri-Sovari S, Pavic A, Vojnovic S, Stringer T, Bättig S, Smith GS, Nikodinovic-Runic J, Zobi F (2019) Antiplasmodial activity and in vivo bio-distribution of chloroquine molecules released with a 4-(4-ethynylphenyl)-triazole moiety from organometallo-cobalamins. Molecules 24(12):2310. https://doi.org/10.3390/molecules24122310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yadav N, Agarwal D, Kumar S, Dixit AK, Gupta RD, Awasthi SK (2018) In vitro antiplasmodial efficacy of synthetic coumarin-triazole analogs. Eur J Med Chem 145:735–745. https://doi.org/10.1016/j.ejmech.2018.01.017

    Article  CAS  PubMed  Google Scholar 

  72. Sharma B, Kaur S, Legac J, Rosenthal PJ, Kumar V (2020) Synthesis, anti-plasmodial and cytotoxic evaluation of 1H–1,2,3-triazole/acyl hydrazide integrated tetrahydro-β-carboline-4-aminoquinoline conjugates. Bioorg Med Chem Lett 30(2):126810. https://doi.org/10.1016/j.bmcl.2019.126810

    Article  CAS  PubMed  Google Scholar 

  73. Santos BMD, Gonzaga DTG, Da Silva FC, Ferreira VF, Garcia CRS (2020) Plasmodium falciparum knockout for the GPCR-Like PfSR25 receptor displays greater susceptibility to 1,2,3-triazole compounds that block malaria parasite development. Biomolecules 10(8):1197. https://doi.org/10.3390/biom10081197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ibrahim ZYU, Uzairu A, Shallangwa GA, Abechi SE (2021) Molecular modeling and design of some β-amino alcohol grafted 1, 4, 5-trisubstituted 1, 2, 3-triazoles derivatives against chloroquine sensitive, 3D7 strain of Plasmodium falciparum. Heliyon 7(1):05924. https://doi.org/10.1016/j.heliyon.2021.e05924

    Article  CAS  Google Scholar 

  75. Maddila S, Momin M, Gorle S, Palakondu L, Jonnalagadda SB (2015) Synthesis and antioxidant evaluation of novel phenothiazine linked substitutedbenzylideneamino-1, 2, 4-triazole derivatives. J Chil Chem Soc 60(2):2919–2923. https://doi.org/10.4067/S0717-97072015000200012

    Article  CAS  Google Scholar 

  76. Cetin A, Geçibesler IH (2015) Evaluation as antioxidant agents of 1, 2, 4-triazole derivatives: Effects of essential functional groups. J Appl Pharm Sci 5(6):120–126. https://doi.org/10.7324/JAPS.2015.50620

    Article  CAS  Google Scholar 

  77. Karrouchi K, Chemlal L, Taoufik J, Cherrah Y, Radi S, El Abbes Faouzi M, Ansar M (2016) Synthesis, antioxidant and analgesic activities of Schiff bases of 4-amino-1,2,4-triazole derivatives containing a pyrazole moiety. Ann Pharm Fr 74(6):431–438. https://doi.org/10.1016/j.pharma.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  78. Kwak MY, Rhee JS (1992) Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production. Biotechnol Bioeng 39(9):903–906. https://doi.org/10.1002/bit.260390904

    Article  CAS  PubMed  Google Scholar 

  79. Kotani T, Ichimoto I, Tatsumi C, Fujita T (1976) Bacteriostatic activities and metal chelation of kojic acid analogs. Agric Biol Chem 40(4):765–770. https://doi.org/10.1080/00021369.1976.10862125

    Article  CAS  Google Scholar 

  80. Kayahara H, Shibata NASAKT, Maeda H, Kotani T, Ichimoto I (1990) Amino acid and peptide derivatives of kojic acid and their antifungal properties. Agric Biol Chem 54(9):2441–2442. https://doi.org/10.1271/bbb1961.54.2441

    Article  CAS  Google Scholar 

  81. Saraei M, Ghasemi Z, Dehghan G, Hormati M, Ojaghi K (2017) Synthesis of some novel 1, 2, 3-triazole derivatives containing kojic acid moiety and evaluation for their antioxidant activity. Monatshefte Für Chem-Chem Mon 148(5):917–923. https://doi.org/10.1007/s00706-016-1844-1

    Article  CAS  Google Scholar 

  82. Ashok D, Gundu S, Aamate VK, Devulapally MG (2018) Microwave-assisted synthesis, antioxidant and antimicrobial evaluation of 2-indolinone-based bis-1,2,3-triazole derivatives. Mol Divers 22(1):57–70. https://doi.org/10.1007/s11030-017-9791-2

    Article  CAS  PubMed  Google Scholar 

  83. Jalaja R, Leela SG, Valmiki PK, Salfeena CTF, Ashitha KT, Krishna-Rao VRD, Nair MS, Gopalan RK, Somappa SB (2018) Discovery of natural product derived labdane appended triazoles as potent pancreatic lipase inhibitors. ACS Med Chem Lett 9(7):662–666. https://doi.org/10.1021/acsmedchemlett.8b00109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ye GJ, Lan T, Huang ZX, Cheng XN, Cai CY, Ding SM, Xie ML, Wang B (2019) Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-glucosidase inhibition and glucose uptake promotion. Eur J Med Chem 177:362–373. https://doi.org/10.1016/j.ejmech.2019.05.045

    Article  CAS  PubMed  Google Scholar 

  85. Holanda VN, Da Silva WV, De Nascimento PH, Silva SRB, Cabral-Filho PE, De Oliveira-Assis SP, Da Silva CA, De Oliveira RN, De Figueiredo RCBQ, De Menezes-Lima VL (2020) Antileishmanial activity of 4-phenyl-1-[2-(phthalimido-2-yl) ethyl]-1H-1, 2, 3-triazole (PT4) derivative on Leishmania amazonensis and Leishmania braziliensis: in silico ADMET, in vitro activity, docking and molecular dynamic simulations. Bioorg Chem 105:104437. https://doi.org/10.1016/j.bioorg.2020.104437

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhumi M. Shah.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, B.M., Modi, P. & Trivedi, P. Recent Investigation on Synthetic ‘Triazoles’ Scaffold as Potential Pharmacological Agents: A Comprehensive Survey. Chemistry Africa 6, 1679–1697 (2023). https://doi.org/10.1007/s42250-023-00617-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00617-3

Keywords

Navigation