Skip to main content
Log in

Electrodeposition of Sb–Se Thin Films from Organic Electrolyte

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The work is devoted to the electrochemical deposition of Sb–Se thin semiconductor films and the determination of the effect of the main factors on the composition of the obtained films. The effect of the electrolyte composition, temperature, current density, etc., on the composition of Sb–Se thin films electrodeposited from an ethylene glycol electrolyte, has been studied to find the optimal composition of the electrolyte and the electrolysis mode. The results of the experiments showed that with an increase in the concentration of H2SeO3, the amount of antimony in the obtained films decreases. An increase in the electrolysis time up to 15 h positively affects the composition of the deposited films. Depending on the current density, the amount of antimony in the composition of the deposited films increases, and high-quality films are formed at a current density of 0.19 mA/cm2. The amount of antimony and selenium in deposits is 48.8% and 51.2%, respectively (weight the stoichiometric composition accords with 50.73% Sb and 49.27% Se). An increase in the electrolyte temperature, current density, and the concentration of SbOCl positively affect an increase in the antimony content in the composition of thin films. The optimal composition of the electrolyte and the suitable electrochemical deposition mode have been determined to obtain thin films of the chemical compound Sb2Se3 close to the stoichiometric composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang L, Wu K, Yu J, Yu Y, Wei Y (2021) Sb2Se3 films fabricated by thermal evaporation and post annealing. Vacuum 183:109840. https://doi.org/10.1016/j.vacuum.2020.109840

    Article  CAS  Google Scholar 

  2. Aliyev II, Mammadova NA, Sadigov FM (2019) Research into phase formation and some physical and chemical properties of the Sb2Se3-GaSe system alloys. Chem Probl 17:403–407. https://doi.org/10.32737/2221-8688-2019-3-403-407

  3. Virt IS, Rudhiy IA, Kurilo IB, Lopatinskiy IE, Linnik LF, Tyetyorkin VV, Potera P, Luka Q (2013) Svoystva thonkikh plyonok Sb2S3 i Sb2Se3, poluchennikh metodom impulsnoy lazernoy ablyasii. Fizika i texnika poluprovodnikov 47:997–1001

    Google Scholar 

  4. Huseynov GM, Mammadova NA, Imanov HA (2017) Obtaining of nanosized compound Sb2S3 on the basis of tioacetamide and antimony (III) chloride. Chem Probl 15:329–334

    Article  Google Scholar 

  5. Majidzade VA, Aliyev ASh, Qasimogli I, Quliyev PH, Tagiyev DB (2019) Electrical properties of electrochemically grown thin Sb2Se3 semiconductor films. Inorg Mater 55:979–983. https://doi.org/10.1134/S0020168519100108

    Article  CAS  Google Scholar 

  6. Khadir A (2022) Performance investigation of Sb2S3 and Sb2Se3 earth abundant based thin film solar cells. Opt Mater 127:112281. https://doi.org/10.1016/j.optmat.2022.112281

    Article  CAS  Google Scholar 

  7. Liu H, Luo G, Cheng H, Yang Z, Xie Z, Zhang KHL, Yang Y (2022) Ultrafast anisotropic evolution of photoconductivity in Sb2Se3 single crystals. J Phys Chem Lett 13:4988–4994. https://doi.org/10.1021/acs.jpclett.2c01346

    Article  CAS  Google Scholar 

  8. Jayswal NK, Rijal S, Subedi B, Subedi I, Song Z, Collins RW, Yan Y, Podraza NJ (2021) Optical properties of thin film Sb2Se3 and identification of its electronic losses in photovoltaic devices. Sol Energy 228:38–44. https://doi.org/10.1016/j.solener.2021.09.025

    Article  CAS  Google Scholar 

  9. Majidzade VA (2020) Sb2Se3-based solar cells: obtaining and properties. Chem Probl 18:181–198. https://doi.org/10.32737/2221-8688-2020-2-181-198

  10. Liang G, Zheng Z, Fan P, Luo J-T, Hu J-G, Zhang X-H, Ma H-L, Fan B, Luo Z-K, Zhang D-P (2018) Thermally induced structural evolution and performance of Sb2Se3 films and nanorods prepared by an easy sputtering method. Sol Energy Mater Sol Cells 174:263–270. https://doi.org/10.1016/j.solmat.2017.09.008

    Article  CAS  Google Scholar 

  11. Yuan C, Zhang L, Liu L (2016) Rapid thermal process to fabricate Sb2Se3 thin film for solar cell application. Sol Energy 137:256–260. https://doi.org/10.1016/j.solener.2016.08.020

    Article  CAS  Google Scholar 

  12. Birkett M, Linhart WM, Stoner J, Phillips LJ, Durose K, Alaria J, Major JD, Kudrawiec R, Veal TD (2018) Band gap temperature-dependence of close-space sublimation grown Sb2Se3 by photo-reflectance. Apl Mater 6:084901. https://doi.org/10.1063/1.5027157

    Article  CAS  Google Scholar 

  13. Wang X, Tang R, Wu C (2018) Development of antimony sulfide–selenide Sb2(S, Se)3-based solar cells. J Energy Chem 27:713–721. https://doi.org/10.1016/j.jechem.2017.09.031

    Article  Google Scholar 

  14. Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K, Han J, Cheng Y (2014) Solution-processed antimony selenide heterojunction solar cells. Adv Energy Mater 4:1301846. https://doi.org/10.1002/aenm.201301846

    Article  CAS  Google Scholar 

  15. Ding-Jiang X, Hang-Jie S, Jiang T (2015) Recent progress in material study and photovoltaic device of Sb2Se3. Acta Phys Sin Chin Ed 64:38406. https://doi.org/10.7498/aps.64.038406

    Article  CAS  Google Scholar 

  16. Zeng K, Xue D-J, Tang J (2016) Antimony selenide thin-film solar cells. Semicond Sci Technol 31:063001. https://doi.org/10.1088/0268-1242/31/6/063001

    Article  CAS  Google Scholar 

  17. Patrick CE, Giustino F (2011) Structural and electronic properties of semiconductor- sensitized solar-cell interfaces. Adv Funct Mater 21:4663–4667. https://doi.org/10.1002/adfm.201101103

    Article  CAS  Google Scholar 

  18. Lei H, Chen J, Tan Z, Fang G (2019) Review of recent progress in antimony chalcogenide-based solar cells. Mater Dev Solar RRL 3:1900026. https://doi.org/10.1002/solr.201900026

    Article  CAS  Google Scholar 

  19. Tian Y, Li G, Zhang Y, Luo D, Wang X, Zhao Y, Liu H, Ji P, Du X, Li J (2020) Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium-sulfur batteries. Adv Mater 32:1904876. https://doi.org/10.1002/adma.201904876

    Article  CAS  Google Scholar 

  20. Ou X, Yang C, Xiong X, Zheng F, Pan Q, Jin C, Liu M, Huang K (2017) A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: in situ X-ray diffraction study on a live sodiation/desodiation process. Adv Funct Mater 27:1606242. https://doi.org/10.1002/adfm.201606242

    Article  CAS  Google Scholar 

  21. Liang G-X, Zhang X-H, Ma H-L, Hu J-G, Fan B, Luo Z-K, Zheng Z-H, Luo J-T, Fan P (2017) Facile preparation and enhanced photoelectrical performance of Sb2Se3 nano-rods by magnetron sputtering deposition. Sol Energy Mater Sol Cells 160:257–262. https://doi.org/10.1016/j.solmat.2016.10.042

    Article  CAS  Google Scholar 

  22. Wu WY, Xu Y, Ong X, Bhatnagar S, Chan Y (2019) Thermochromism from ultrathin colloidal Sb2Se3 nanowires undergoing reversible growth and dissolution in an amine-thiol mixture. Adv Mater 31:1806164. https://doi.org/10.1002/adma.201806164

    Article  CAS  Google Scholar 

  23. Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K (2014) Solution-processed antimony selenide heterojunction solar cells. Adv Energy Mater 4:1301846. https://doi.org/10.1002/aenm.201301846

    Article  CAS  Google Scholar 

  24. Wen S, Yin X, Zhang C, Guo Y, Liu J, Wang E, Zheng C, Que W, Liu H, Liu W (2021) Achievable efficiency improvement of Sb2Se3 thin-film solar cells through interface engineering. Mater Lett 283:128770. https://doi.org/10.1016/j.matlet.2020.128770

    Article  CAS  Google Scholar 

  25. Rahnamaye Aliabad HA, Asadi Rad F (2018) Structural, electronic and thermoelectric properties of bulk and monolayer of Sb2Se3 under high pressure: by GGA and mBJ approaches. Phys B Condens Matter 545:275–284. https://doi.org/10.1016/j.physb.2018.06.030

    Article  CAS  Google Scholar 

  26. Tang G, Liu W, Qian Q, Qian G, Sun M, Yang L, Huang K, Chen D, Yang Z (2017) Antimony selenide core fibers. J Alloys Compd 694:497–501. https://doi.org/10.1016/j.jallcom.2016.10.043

    Article  CAS  Google Scholar 

  27. Arun P, Vedeshwar AG, Mehra NC (1999) Laser-induced crystallization in amorphous films of Sb2C3 (C = S, Se, Te), potential optical storage media. J Phys D Appl Phys 32:183–190. https://doi.org/10.1088/0022-3727/32/3/001

    Article  CAS  Google Scholar 

  28. Ma J, Wang Y, Wang Y, Chen Q, Lian J, Zheng W (2009) Controlled synthesis of one-dimensional Sb2Se3 nanostructures and their electrochemical properties. J Phys Chem 113:13588–13592. https://doi.org/10.1021/jp902952k

    Article  CAS  Google Scholar 

  29. Fateev VN, Alexeeva OK, Korobtsev SV, Seregina EA, Fateeva TV, Grigorev AS, Aliyev ASh (2018) Problems of accumulation and storage of hydrogen. Chem Probl 16:453–483 https://doi.org/10.32737/2221-8688-2018-4-453-483

  30. Chen S, Liu T, Chen M, Ishaq M, Tang R, Zheng Z, Su Z, Li X, Qiao X, Fan P, Liang G (2022) Crystal growth promotion and interface optimization enable highly efficient Sb2Se3 photocathodes for solar hydrogen evolution. Nano Energy 99:107417. https://doi.org/10.1016/j.nanoen.2022.107417

    Article  CAS  Google Scholar 

  31. Wang J, Li X, Zhang S, Cai P, Li X, Mu Y, Sun M, Yang H, Chen A, Dong S (2022) Electrodeposition of vertically aligned Sb2Se3 nanorods array for photocatalytic reduction of methylene blue. J Solid State Chem 307:122757. https://doi.org/10.1016/j.jssc.2021.122757

    Article  CAS  Google Scholar 

  32. Prabhakar RR, Moehl T, Friedrich D, Kunst M, Shukla S, Adeleye D, Damle VH, Siol S, Cui W, Gouda L, Suh J, Tischler YR, Krol R (2022) Sulfur treatment passivates bulk defects in Sb2Se3 photocathodes for water splitting. Adv Funct Mater 32:2112184. https://doi.org/10.1002/adfm.202112184

    Article  CAS  Google Scholar 

  33. Jeong HI, Park S, Yang HI, Choi W (2019) Electrical properties of MoSe2 metal-oxide-semiconductor capacitors. Mater Lett 253:209–212. https://doi.org/10.1016/j.matlet.2019.06.072

    Article  CAS  Google Scholar 

  34. Mejidzade VA, Cafarova SF, Aliyev ASh, Tagiyev DB (2018) Influence of various factors on the composition of electrodeposited thin films Mo–S. Azerb Chem J 3:6–10. https://doi.org/10.32737/0005-2531-2018-3-6-10

    Article  Google Scholar 

  35. Majidzade VA, Mammadova SP, Petkucheva ES, Slavcheva EP, Aliyev ASh, Tagiyev DB (2020) Co-electrodeposition of iron and sulfur in aqueous and non-aqueous electrolytes. Bulg Chem Commun 52(Special Issue E):73–78

  36. Jiménez T, Seuret-Jiménez D, Vigil-Galán O, Basurto-Pensado MA, Courel M (2018) Sb2(S1–xSex)3 solar cells: the impact of radiative and non-radiative loss mechanisms. J Phys D Appl Phys 51:435501. https://doi.org/10.1088/1361-6463/aaddea

    Article  CAS  Google Scholar 

  37. Wen X, Chen C, Lu S, Li K, Kondrotas R, Zhao Y, Chen W, Gao L, Wang Ch, Zhang J, Niu G, Tang J (2018) Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nat Commun 9:2179. https://doi.org/10.1038/s41467-018-04634-6

    Article  CAS  Google Scholar 

  38. Li Z, Liang X, Li G, Liu H, Zhang H, Guo J, Chen J, Shen K, San X, Yu W, Schropp REI, Mai Y (2019) 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat Commun 10:125. https://doi.org/10.1038/s41467-018-07903-6

    Article  CAS  Google Scholar 

  39. Duan Z, Liang X, Feng Y, Ma H, Liang B, Wang Y, Luo S, Wang S, Schropp REI, Mai Y, Li Z (2022) Sb2Se3 thin-film solar cells exceeding 10% power conversion efficiency enabled by injection vapor deposition technology. Adv Mater 34:2202969. https://doi.org/10.1002/adma.202202969

    Article  CAS  Google Scholar 

  40. Liu X, Chen J, Luo M, Leng M, Xia Z, Zhou Y, Qin S, Xue D-J, Lv L, Huang H, Niu D, Tang J (2014) Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Appl Mater Interfaces 6:10687–10695. https://doi.org/10.1021/am502427s

    Article  CAS  Google Scholar 

  41. Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D-J, Luo M, Cao Y, Cheng Y, Sargent EH, Tang J (2015) Thin-film Sb2Se3 photovoltaics with oriented onedimensional ribbons and benign grain boundaries. Nat Photon 9:409–415. https://doi.org/10.1038/nphoton.2015.78

    Article  CAS  Google Scholar 

  42. Yuan C, Jin X, Jiang G, Liu W, Zhu C (2016) Solar cells prepared with selenized dc-sputtered metallic precursors. J Mater Sci Mater Electron 27:1–5. https://doi.org/10.1007/s10854-016-4917-3

    Article  CAS  Google Scholar 

  43. Tao R, Tan T, Zhang H, Meng Q, Zha G (2021) Sb2Se3 solar cells fabricated via close-space sublimation. J Vac Sci Technol B 39:052203. https://doi.org/10.1116/6.0001034

    Article  CAS  Google Scholar 

  44. Costa MB, Lucas FWS, Mascaroa LH (2020) Improvement of electrodeposited Sb2Se3 thin film photoelectroactivity by cobalt grain boundary modification. J Mater Chem A 8:13742–13753. https://doi.org/10.1039/D0TA03160G

    Article  CAS  Google Scholar 

  45. Costa MB, Lucas FWS (2019) Electrodeposition conditions effect Sb2Se3 thin-film properties. ChemElectroChem 6:2937–2944. https://doi.org/10.1002/celc.201900457

    Article  CAS  Google Scholar 

  46. Majidzade VA, Aliyev ASh, Tagiyev DB (2020) Electrochemical deposition of Sb2Se3 thin films semiconductor from tartaric acid solution. Bulg Chem Commun 52(Special Issue E):62–67

  47. Majidzade VA (2018) Effect of various factors on the composition of electrolytic thin films Sb–Se. Chem Probl 16:331–336. https://doi.org/10.32737/2221-8688-2018-3-331-336

    Article  Google Scholar 

  48. Majidzade VA, Aliyev ASh, Guliyev PH, Babanly DM (2020) Electrodeposition of the Sb2Se3 thin films on various substrates from the tartaric electrolyte. J Electrochem Sci Eng 10:1–9. https://doi.org/10.5599/jese.676

    Article  CAS  Google Scholar 

  49. Majidzade VA, Aliyev GS, Aliyev ASh, Huseynova RH, Mammadova ZM (2021) Mathematical modeling and optimization of the electrodeposition process of antimony-selenium system. Azerb Chem J 1:30–36. https://doi.org/10.32737/0005-2531-2021-1-30-36

    Article  CAS  Google Scholar 

  50. Nemodruk AA (1978) Analiticheskaya khimiya surmi. Nauka, Russian

  51. Barkovskiy VF, Qorodentseva TB, Toporova NB (1983) Osnovi fiziko-khimicheskikh metodov analiza. Visshaya Shkola, Russian

  52. Sukhotin AA (1981) Handbook of electrochemistry chemistry. Leningrad, Russian

  53. Razykov TM, Shukurov AX, Atabayev OK, Kuchkarov KM, Ergashev B, Mavlonov AA (2018) Growth and characterization of Sb2Se3 thin films for solar cells. Sol Energy 173:225–228. https://doi.org/10.1016/j.solener.2018.07.082

    Article  CAS  Google Scholar 

  54. Wang C, Du X, Wang S, Deng H, Chen C, Niu G, Pang J, Li K, Lu S, Lin X, Song H, Tang J (2021) Sb2Se3 film with grain size over 10 μm toward X-ray detection. Front Optoelectron 14:341–351. https://doi.org/10.1007/s12200-020-1064-5

    Article  CAS  Google Scholar 

  55. Gamburg DY, Zaugari G (2011) Theory and practice of metal electrodeposition. Springer, New york

    Book  Google Scholar 

  56. Samarsky AA (2005) Introduction to numerical methods. Lan, Russian

  57. Samarsky AA, Mikhailov AP (1997) Mathematical modeling. Ideas. Methods. Examples. Physmathgiz, Russian

  58. Bykov VI, Zhuravlev VM (2002) Modeling and optimization of chemical-technological processes. Krasnoyarsk, Russian

  59. Akhnazarova SL, Kafarov VV (1985) Methods of optimizing experiment in chemical technology. High School, Russian

  60. Kafarov VV (1971) Methods of cybernetics in chemistry and chemical technology. Chemistry, Russian

Download references

Funding

The work has been carried out with the financial support of the Azerbaijan National Academy of Sciences within the research programs in priority directions in 2021-2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vusala Asim Majidzade.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidzade, V.A., Javadova, S.P., Aliyev, G.S. et al. Electrodeposition of Sb–Se Thin Films from Organic Electrolyte. Chemistry Africa 5, 2085–2094 (2022). https://doi.org/10.1007/s42250-022-00480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00480-8

Keywords

Navigation