Skip to main content
Log in

Topical Anti-Inflammatory Activity of Petiveria alliacea, Chemical Profiling and Computational Investigation of Phytoconstituents Identified from its Active Fraction

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

A Correction to this article was published on 22 April 2022

This article has been updated

Abstract

Inflammation continues to become a growing health concern linked to different disease conditions worldwide. This study aimed to validate the ethnomedicinal topical anti-inflammatory activity of Petiveria alliacea and elucidate the possible inflammatory inhibitory mechanism of the chemical constituents identified from the most active fraction. The egg-albumin induced rat paw oedema model was used to evaluate the anti-inflammatory activity of P. alliacea leaf extract and partitioned fractions. The GC–MS chemical profiling of the most active fraction identified the chemical constituents responsible for the anti-inflammatory activity. Furthermore, a molecular docking study of TNF-α and COX-2 enzymes were carried out followed by the DFT studies of the hit molecules. The findings showed that P. alliacea extract at 2.5% and 5% elicited anti-inflammatory effect greater than that of the standard drug. The n-hexane fraction showed greater oedema inhibition after 4 h as compared to the aqueous fraction and diclofenac gel. The GC–MS analysis of the n-hexane fraction revealed the presence of 19 chemical compounds. Of the identified chemical compounds, Stigmasterol (− 6.5 kcal/mol) elicited the best binding energy against TNF- α, while Stigmasterol (− 9.7 kcal/mol) and vitamin E (− 8.7 kcal/mol) were identified as hit molecules against COX-2 enzyme. Also, the electronic parameters calculated revealed the compounds as promising anti-inflammatory molecules. The study suggests extensive phytochemical and pharmacological investigation of the most active fraction to identify new anti-inflammatory agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Chen D, Holly S, Ana G, Tsutomu A, Shamra M, Charlotte V, Chiao-Wen C, Xiaoqin F, Anne W, Wei B, Liang L, Lisa F, Kurt J, Yvonne RF (2018) Inhibition of toll-like receptor-mediated inflammation in vitro and in vivo by a novel Benzoxaborole. J Pharmacol Exp Ther 344:436–446

    Google Scholar 

  2. Guo LY, Hung TM, Bae KH, Shin EM, Zhou HY, Hong YN, Kang SS, Kim HP, Kim YS (2008) Anti-inflammatory effects of schisandrin isolated from the fruit of Schisandra chinensis Baill. Eur J Pharmacol 591:293–299

    Article  CAS  PubMed  Google Scholar 

  3. Ljung T, Lundberg S, Varsanyi M, Johansson C, Schmidt PT, Herulf M, Lundberg JO, Hellström PM (2006) Rectal nitric oxide as biomarker in the treatment of inflammatory bowel disease: responders versus nonresponders. WJG 12:3386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abdulkhaleq L, Assi M, Abdullah R, Zamri-Saad M, Taufiq-Yap Y, Hezmee M (2018) The crucial roles of inflammatory mediators in inflammation: a review. Vet World 11:627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oyemitan IA, Iwalewa EO, Akanmu MA, Olugbade TA (2008) Antinociceptive and antiinflammatory effects of essential oil of Dennettia tripetala G. baker (Annonaceae) in rodents. Afr J Tradit Complement Altern Med 5(4):355–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sibi G, Rabina S (2016) Inhibition of pro-inflammatory mediators and cytokines by Chlorella vulgaris extracts. Pharmacogn Res 8:118

    Article  CAS  Google Scholar 

  7. Williams JE, Emily S (1997) Regulation of macrophage cytokine production by prostaglandin E2 distinct roles of cyclooxygenase-1 and -2. J Biol Chem 272(41):25693–25699

    Article  CAS  PubMed  Google Scholar 

  8. Kany S, Vollrath JT, Relja B (2019) Cytokines in inflammatory disease. Int J Mol Sci 20:6008

    Article  CAS  PubMed Central  Google Scholar 

  9. Zuliani G, Ranzini M, Guerra G, Rossi L, Munari M, Zurlo A, Volpato S, Atti A, Ble A, Fellin R (2007) Plasma cytokines profile in older subjects with late onset Alzheimer’s disease or vascular dementia. J Psychiatr Res 41:686–693

    Article  CAS  PubMed  Google Scholar 

  10. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    Article  CAS  PubMed  Google Scholar 

  11. Randle M, Riley C, Williams L, Watson CA (2018) Systematic review of the traditional and medicinal uses of Petiveria alliacea L. in the treatment of chronic diseases. J Plant Res 5:179–185

    Google Scholar 

  12. Yuan C, Sidhu RS, Kuklev DV, Kado Y, Wada M, Song I, Smith WL (2009) Cyclooxygenase allosterism, fatty acid-mediated cross-talk between monomers of cyclooxygenase homodimers. J Biol Chem 284:10046–10055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Queiroz MS, Quadros MR, Santos LM (2000) Cytokine profile and natural killer cell activity in Listeria monocytogenes infected mice treated orally with Petiveria alliacea extract. Immunopharmacol Immunotoxicol 22:501–518

    Article  CAS  PubMed  Google Scholar 

  14. Falcão HDS, Lima IO, Santos VLD, Dantas HDF, Diniz MDF, Barbosa-Filho JM, Batista LM (2005) Review of the plants with anti-inflammatory activity studied in Brazil. Rev Bras Farmacogn 15:381–391

    Article  Google Scholar 

  15. Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31(5):986–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harvey AL (2008) Natural products in drug discovery. Drug Discov 13:894–901

    CAS  Google Scholar 

  17. Garcia R, Ferreira JP, Costa G, Santos T, Branco F, Caramona M, de Carvalho R, Dinis AM, Batista MT, Castel-Branco M, Figueiredo I (2015) Evaluation of anti-inflammatory and analgesic activities of Cymbopogon citratus in vivo polyphenols contribution. Res J Med Plant 9(1):1–13

    CAS  Google Scholar 

  18. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 13384–13421

  19. Madkour LH, Kaya S, Guo L, Kaya C (2018) Quantum chemical calculations, molecular dynamic simulations and experimental studies of using some azo dyes as corrosion inhibitors for iron. Part 2: bis–azo dye derivatives. J Mol Struct 397–417

  20. Braga EJ, Corpe BT, Marinho MM, Marinho ES (2016) Molecular electrostatic potential surface, HOMO–LUMO, and computational analysis of synthetic drug Rilpivirine. Int J Sci Eng Res 7(7):315–319

    Google Scholar 

  21. Fukui K (1982) Role of frontier orbitals in chemical reactions. Sci 218:747–754

    Article  CAS  Google Scholar 

  22. Obot I, Macdonald D, Gasem Z (2015) Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview. Corros Sci 99:1–30

    Article  CAS  Google Scholar 

  23. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1:104–113

    Article  Google Scholar 

  24. Stefaniu A, Pintilie L (2018) Molecular descriptors and properties of organic molecules. Symmetry (group theory) and mathematical treatment in chemistry. InTech, Rijeka 161–176

  25. Ochoa PA, Marín MJ, González GZ, Hidalgo RA, Mujawimana RJ, Tamayo GK, Sariego FS (2013) In vitro antimicrobial activity of total extracts of the leaves of Petiveria alliacea L (Anamu). Braz J Pharm Sci 49:241–250

    Article  Google Scholar 

  26. Oguntimehin S, Ajaiyeoba E, Ogbole O, Dada-Adegbola H, Oluremi B, Adeniji A (2021) Evaluation of selected Nigerian medicinal plants for antioxidant, antimicrobial and cytotoxic activities. Res Squa 2–19

  27. Urueña C, Cifuentes C, Castañeda D, Arango A, Kaur P, Asea A, Fiorentino S (2018) Petiveria alliacea extracts use multiple mechanisms to inhibit growth of human and mouse tumoral cells. BMC Complement Altern Med 8:1–17

    Google Scholar 

  28. Cuellar M, Giner R, Recio M, Manez S, Rıos J (2001) Topical anti-inflammatory activity of some Asian medicinal plants used in dermatological disorders. Fitoterapia 72:221–229

    Article  CAS  PubMed  Google Scholar 

  29. Santos ES, de Morais Oliveira-Tintino CD, Correia DB, de Alencar CDC, de Fátima SM, Lima CNF, de Sousa Machado ST, Gomes ADS, de Oliveira Garcia FA, Menezes IRA (2021) Topical anti-inflammatory effect of hydroalcoholic extract of leaves of Licania rigida Benth. in mice. Phytomed Plus 1:100110

    Article  Google Scholar 

  30. Sathiyabalan G, Michael ER, Muthukumarasamy S, Mohan VR (2017) Antiinflammatory activity of whole plant of Petiveria alliacea L. (Phytolaccaceae). Int J Pharm Sci Rev Res 47(2):123–125

    Google Scholar 

  31. Akinloye O, Alagbe O, Ugbaja R, Omotainse S (2020) Evaluation of the modulatory effects of Piper guineense leaves and seeds on egg albumin-induced inflammation in experimental rat models. J Ethnopharmacol 255:112762

    Article  CAS  PubMed  Google Scholar 

  32. Anosike CA, Obidoa O, Ezeanyika LU (2012) The anti-inflammatory activity of garden egg (Solanum aethiopicum) on egg albumin-induced oedema and granuloma tissue formation in rats. Asian Pac J Trop Med 5:62–66

    Article  PubMed  Google Scholar 

  33. Yuan S, Chan HS, Hu Z (2017) Using PyMOL as a platform for computational drug design. Interdiscip Rev Comput Mol Sci 7:e1298

    Google Scholar 

  34. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  36. Lopes-Martins RAB, Pegoraro DH, Woisky R, Penna SC, Sertié JAA (2002) The anti-inflammatory and analgesic effects of a crude extract of Petiveria alliacea L. (Phytolaccaceae). Phytomedicine 9(3):245–248

    Article  CAS  PubMed  Google Scholar 

  37. Godwin A, Akinpelu BA, Makinde AM, Aderogba MA, Oyedapo OO (2015) Identification of n-hexane fraction constituents of Archidium ohioense (Schimp. Ex Mull) extract using GC-MS technique. Br J Pharm Res 6(6):366–375

    Article  CAS  Google Scholar 

  38. Faloye KO, Bekono BD, Fakola EG, Ayoola MD, Bello OI, Olajubutu OG, Owoseeni OD, Mahmud S, Alqarni M, Al Awadh AA, Alshahrani MM (2021) Elucidating the glucokinase activating potentials of naturally occurring prenylated flavonoids: an explicit computational approach. Molecules 26(23):7211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mumit MA, Pal TK, Alam MA, Islam MAAAA, Paul S, Sheikh MC (2020) DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2, 4, 5-trimethoxyphenylmethylene) hydrazinecarbodithioate. J Mol Struct 1220:128715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, KOF and OGO; methodology, KOF, BIO and OGO; data analysis, OGO and OIA; GC–MS data acquisition, AHA; molecular docking and DFT studies, EGF and KOF; investigation, OGO, BIO and KOF; writing of original draft; OGO, BIO, AHA, OIA, GA and KOF writing, reviewing and editing, KOF, AHA and GA; supervision, OGO and KOF. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kolade O. Faloye.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

The original online version of this article was revised to correct author name to Kolade O. Faloye and correct values in abstract.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 253 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olajubutu, O.G., Ogunremi, B.I., Adewole, A.H. et al. Topical Anti-Inflammatory Activity of Petiveria alliacea, Chemical Profiling and Computational Investigation of Phytoconstituents Identified from its Active Fraction. Chemistry Africa 5, 557–565 (2022). https://doi.org/10.1007/s42250-022-00339-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00339-y

Keywords

Navigation