Skip to main content
Log in

Investigation of Corrosion Inhibition Potentials of Some Aminopyridine Schiff Bases Using Density Functional Theory and Monte Carlo Simulation

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This work presents the investigation of corrosion inhibition potentials of six aminopyridine Schiff bases ((N-(5-substituted-2-hydroxybenzylidene)pyridine-4-amine)) and the enhancement of anti-corrosion potentials through structural modifications. The anti-corrosion potentials of six Schiff bases were studied at density functional theory/Becke-3-Lee–Yang–Parr/6-31G(d) level of theory. Chemical reactivity and selectivity parameters like frontier orbital energies (EHOMO and ELUMO), ionization energy, electron affinity, energy gap, global softness, chemical hardness, electronegativity, electrophilicity and back-donation energy were calculated. The asymmetric charge distribution and reactive sites were investigated by calculating the Mulliken charges, Fukui indices, HOMO, LUMO and electrostatic potential surfaces. Simulation of adsorption energy and Fe(110)-inhibitor interactions was achieved via Monte Carlo (MC) simulation. The total energy (ETot) and adsorption energy (EAds) of the stable configurations of the metal-Schiff base system were calculated. The kinetic instability, chemical reactivity and good corrosion mitigation potentials of the Schiff bases were deduced from their high EHOMO, electron affinity, global softness, electronegativity and electrophilicity, and low energy gap, ionization energy and global hardness. The heteroatoms (N, O and Br) and the aromatic π-structure are essentially the possible sites on the Schiff bases susceptible to electrophilic attack as revealed by the electrostatic potential map and Fukui indices. However, N-(5-amino-2-hydroxybenzylidene)pyridine-4-amine displayed lowest energy gap, global softness, ionization energy and remarkably great back-donation ability suggesting its effective anti-corrosion potential. The MC simulation reveals good thermodynamic stability (from low ETot) and strong interactions (from EAds) between the iron surface and the Schiff bases. The adsorbed inhibitors offered effective surface coverage and remarkably isolated parts of the iron surface from the aqueous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Revie RW, Uhlig HH (2008) Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, 1–512, 4th edn. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  2. Oyeneyin OE, Obadawo BS, Ojo FK, Akerele DD, Akintemi EO, Ejelonu BC, Ipinloju N (2020) Experimental and theoretical study on the corrosion inhibitive potentials of schiff base of aniline and salicyaldehyde on mild steel in 0 5M HCl. Adv J Chem-Section B 2(4):197–208

    Google Scholar 

  3. Fayomi OSI, Akande IG, Odigie S (2019) Economic impact of corrosion in oil sectors and prevention: an overview. J Phys: Conf Ser 1378:1–8. https://doi.org/10.1088/1742-6596/1378/2/022037

    Article  CAS  Google Scholar 

  4. Koch, G. (2017). 1 - Cost of corrosion. In Trends in Oil and Gas Corrosion Research and Technologies. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-101105-8.00001-2

  5. Fan W, Wang H, Wang C, Liu Z, Zhu Y, Li K (2020) Epoxy coating capable of providing multi-component passive film for long-term anti-corrosion of steel. Appl Surf Sci 521:1–13

    Article  Google Scholar 

  6. Verma DK, Aslam R, Aslam J, Quraishi MA, Ebenso EE, Verma C (2021) Computational modeling: theoretical predictive tools for designing of potential organic corrosion inhibitors. J Mol Struct 1236:1–21. https://doi.org/10.1016/j.molstruc.2021.130294

    Article  CAS  Google Scholar 

  7. Brycki BE, Kowalczyk IH, Brycki E, Szulc A, Kaczerewska O, Pakiet M, Kowalczyk IH, Szulc A (2017) World’s largest Science. Technology & Medicine Open Access book publisher Provisional chapter Organic Corrosion Inhibitors Organic Corrosion Inhibitors. https://doi.org/10.5772/intechopen.72943

    Article  Google Scholar 

  8. Verma DK, Dewangan Y, Dewangan AK, Asatkar A (2021) Heteroatom-based compounds as sustainable corrosion inhibitors: an overview. J Bio- and Tribo-Corrosion 7(15):1–18. https://doi.org/10.1007/s40735-020-00447-7

    Article  CAS  Google Scholar 

  9. Ogunyemi B, Latona D, Ayinde A, Adejoro I (2020) Theoretical investigation to corrosion inhibition efficiency of some chloroquine derivatives using density functional theory. Adv J Chem-Section A 3(4):485–492. https://doi.org/10.33945/SAMI/AJCA.2020.4.10

    Article  CAS  Google Scholar 

  10. Odewole OA, Ibeji CU, Oluwasola HO, Oyeneyin OE, Akpomie KG, Ugwu CM, Ugwu CG, Bakare TE (2021) Synthesis and anti-corrosive potential of Schiff bases derived 4-nitrocinnamaldehyde for mild steel in HCl medium: Experimental and DFT studies. J Mol Struct 1223:1–9. https://doi.org/10.1016/j.molstruc.2020.129214

    Article  CAS  Google Scholar 

  11. Amoko J, Akinyele O, Oyeneyin O, Olayanju D (2021) Corrosion inhibitive potentials Of (E)-5-((4-Benzoylphenyl)Diazenyl)-2-Hydroxybenzoic acid on mild steel surface in 05 M HCl- experimental and DFT calculations. J Turkish Chem Soc Sect A: Chem 8(1):343–362

    CAS  Google Scholar 

  12. Ojo ND, Krause RW, Obi-Egbedi NO (2020) Electronic and nonlinear optical properties of 3-(((2-substituted-4-nitrophenyl)imino)methyl)phenol. Comput Theor Chem 1192:1–8. https://doi.org/10.1016/j.comptc.2020.113050

    Article  CAS  Google Scholar 

  13. Alamro FS, Gomha SM, Shaban M, Altowyan AS, Abolibda TZ, Ahmed HA (2021) Optical investigations and photoactive solar energy applications of new synthesized Schiff base liquid crystal derivatives. Sci Rep 11(1):1–11. https://doi.org/10.1038/s41598-021-94533-6

    Article  CAS  Google Scholar 

  14. Gomha SM, Ahmed HA, Shaban M, Abolibda TZ, Khushaim MS, Alharbi KA (2021) Synthesis, optical characterizations and solar energy applications of new schiff base materials. Materials 14(13):1–16. https://doi.org/10.3390/ma14133718

    Article  CAS  Google Scholar 

  15. Xu J, Liu Y, Hsu S, hui. (2019) Hydrogels based on schiff base linkages for biomedical applications. Molecules 24(16):1–21. https://doi.org/10.3390/molecules24163005

    Article  CAS  Google Scholar 

  16. Afzal SM, Razvi MAN, Khan SA, Osman OI, Bakry AH, Asiri AM (2016) Physicochemical and nonlinear optical properties of novel environmentally benign heterocyclic azomethine dyes: experimental and theoretical studies. PLoS ONE 11(9):1–25. https://doi.org/10.1371/journal.pone.0161613

    Article  CAS  Google Scholar 

  17. Oyeneyin OE, Adejoro IA, Ogunyemi BT, Esan OT (2018) Structural and solvent dependence on the molecular and nonlinear optical properties of 10-octyl thiophene-based phenothiazine and substituted derivatives – a theoretical approach. J Taibah Univ Sci 12(4):483–493. https://doi.org/10.1080/16583655.2018.1485274

    Article  Google Scholar 

  18. Iroha NB, Dueke-eze CU, James AO, Fasina TM (2021) Newly synthesized N-(5-nitro-2-hydroxybenzylidene)pyridine-4-amine as a high-potential inhibitor for pipeline steel corrosion in hydrochloric acid medium. Egypt J Pet 30:55–61. https://doi.org/10.1016/j.ejpe.2021.02.003

    Article  Google Scholar 

  19. Oyeneyin O, Akerele D, Ojo N, Oderinlo O (2021) Corrosion Inhibitive Potentials of some 2H-1-benzopyran-2-one Derivatives- DFT Calculations. Biointerface Research in Applied Chemistry 11(6):13968–13981

    Article  CAS  Google Scholar 

  20. Obot IB, Kaya S, Kaya C, Tüzün B (2016) Theoretical evaluation of triazine derivatives as steel corrosion inhibitors: DFT and Monte Carlo simulation approaches. Res Chem Intermed 42(5):4963–4983. https://doi.org/10.1007/s11164-015-2339-0

    Article  CAS  Google Scholar 

  21. Obot IB, Macdonald DD, Gasem ZM (2015) Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors: Part 1: An overview. Corros Sci 99:1–30. https://doi.org/10.1016/j.corsci.2015.01.037

    Article  CAS  Google Scholar 

  22. Ani FE, Ibeji CU, Obasi NL, Kelani MT, Ukogu K, Tolufashe GF, Ogundare SA, Oyeneyin OE, Maguire GEM, Kruger HG (2021) Crystal, spectroscopic and quantum mechanics studies of Schiff bases derived from 4-nitrocinnamaldehyde. Sci Rep 11:1–11. https://doi.org/10.1038/s41598-021-87370-0

    Article  CAS  Google Scholar 

  23. Verma DK, Kaya S, Ech-chihbi E, El-Hajjaji F, Phukan MM, Alnashiri HM (2021) Investigations on some coumarin based corrosion inhibitors for mild steel in aqueous acidic medium: Electrochemical, surface morphological, density functional theory and Monte Carlo simulation approach. J Mol Liq 329:1–18. https://doi.org/10.1016/j.molliq.2021.115531

    Article  CAS  Google Scholar 

  24. Spartan ’14 (2014). Wavefunction Inc., Irvine, CA, USA.

  25. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  26. Jensen F (2001) Polarization consistent basis sets: Principles. J Chem Phys 115(20):9113–9125. https://doi.org/10.1063/1.1413524

    Article  CAS  Google Scholar 

  27. Parr RG, Pearson RG (1983) Absolute Hardness : Companion Parameter to Absolute Electronegativity 105(26):7512–7516. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  28. Parr RG, Hill C, Carolina N (1999) Electrophilicity Index 10:1922–1924. https://doi.org/10.1021/ja983494x

    Article  Google Scholar 

  29. Yao N, Diki S, Gondo G, Diomandé D, Akpa SJ, Ouédraogo A (2018) Aluminum corrosion inhibition by 7-(Ethylthiobenzimidazolyl) theophylline in 1M hydrochloric acid: experimental and DFT studies. Int J Appl Pharm Sci Res 3(4):41–53

    Article  Google Scholar 

  30. Eddy NO, Ameh PO, Essien NB (2018) Experimental and computational chemistry studies on the inhibition of aluminium and mild steel in 0.1 M HCl by 3-nitrobenzoic acid. J Taibah Univ Sci 12(5):545–556. https://doi.org/10.1080/16583655.2018.1500514

    Article  Google Scholar 

  31. Sun S, Zhang X, Cui J, Liang S (2020) Identification of the Miller indices of crystallographic plane: A tutorial and comprehensive review on fundamental theory, universal methods based on different case studies and matters needing attention. Nanoscale 12(32):16657–16677. https://doi.org/10.1039/D0NR03637D

    Article  CAS  PubMed  Google Scholar 

  32. Rahimi A, Abdouss M, Farhadian A, Guo L, Neshati J (2021) Development of a novel thermally stable inhibitor based on furfuryl alcohol for mild steel corrosion in a 15% HCl medium for acidizing application. Ind Eng Chem Res 60(30):11030–11044. https://doi.org/10.1021/acs.iecr.1c01946

    Article  CAS  Google Scholar 

  33. Errahmany N, Rbaa M, Abousalem AS, Tazouti A, Galai M, El Kafssaoui EH, Touhami ME, Lakhrissi B, Touir R (2020) Experimental, DFT calculations and MC simulations concept of novel quinazolinone derivatives as corrosion inhibitor for mild steel in 1.0 M HCl medium. J Mol Liq 312:113413

    Article  CAS  Google Scholar 

  34. Haldhar R, Prasad D, Bahadur I, Dagdag O, Kaya S, Verma DK, Kim S-C (2021) Investigation of plant waste as a renewable biomass source to develop efficient, economical and eco-friendly corrosion inhibitor. J Mol Liq 335:1–11

    Article  Google Scholar 

  35. Ojo ND, Krause RW, Obi-Egbedi NO (2020) Electronic and nonlinear optical properties of 2-(((5-aminonaphthalen-1-yl)imino)methyl)phenol: Experimental and time-dependent density functional studies. J Mol Liq 319:1–8. https://doi.org/10.1016/j.molliq.2020.114157

    Article  CAS  Google Scholar 

  36. Albrakaty RH, Wazzan NA, Obot IB (2018) Theoretical study of the mechanism of corrosion inhibition of carbon steel in acidic solution by 2-aminobenzothaizole and 2-mercatobenzothiazole. Int J Electrochem Sci 13:3535–3554

    Article  CAS  Google Scholar 

  37. Geerlings P, Brussel VU (2014) Chemical reactivity as described by quantum chemical methods. J Mol Sci 3(4):276–309. https://doi.org/10.3390/i3040276

    Article  Google Scholar 

  38. Loto RT (2018) Surface coverage and corrosion inhibition effect of Rosmarinus officinalis and zinc oxide on the electrochemical performance of low carbon steel in dilute acid solutions. Results Phys 8:172–179

    Article  Google Scholar 

Download references

Funding

This research received no funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oluwatoba Emmanuel Oyeneyin or Nathanael Damilare Ojo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyeneyin, O.E., Ojo, N.D., Ipinloju, N. et al. Investigation of Corrosion Inhibition Potentials of Some Aminopyridine Schiff Bases Using Density Functional Theory and Monte Carlo Simulation. Chemistry Africa 5, 319–332 (2022). https://doi.org/10.1007/s42250-021-00304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-021-00304-1

Keywords

Navigation