Skip to main content
Log in

Palladium Nanoparticles: Plant Aided Biosynthesis, Characterization, Applications

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Among diverse metal nanoparticles, palladium nanoparticles (PdNPs) have captured the special attention of researchers because of their unique applications. However, the synthesis of PdNPs by conventional procedures incorporates harmful solvents, reducing agents, and produces toxic pollutants and by-products. The plant part extract-assisted green synthesis of palladium nanoparticles has been known as the best solution to minimize the limitations of conventional methods. Bio synthesized nanoparticles have good selectivity and catalytic properties. Thus, they have been investigated as nanocatalysts in numerous catalyst based reactions. In this review article, we have explored the various plant parts responsible for the bioreduction of palladium ions, characterization of PdNPs and heterogeneous catalytic activity of PdNPs in the C–C coupling reaction. In addition, we reviewed a plausible mechanist approach for the fabrication of PdNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35

Similar content being viewed by others

Abbreviations

PdNPs:

Palladium nanoparticles

Pd:

Palladium metal

XRD:

Palladium nanoparticles

FTIR:

Fourier transforms infrared spectroscopy

TEM:

Transmission electron microscopy

SEM:

Scanning electron microscopy

EDS:

Energy-dispersive X-ray spectroscopy

FE-SEM:

Field emission SEM

HRTEM:

High-resolution TEM

SAED:

Selected area electron diffraction

XPS:

X-ray photoelectron spectroscopy

TON:

Turnover number

TOF:

Turnover frequency

PEG:

Polyethylene glycol

ICP-AES:

Inductively coupled plasma atomic emission spectroscopy

WEPBA:

Water extract of papaya bark ash

EDX:

Energy dispersive X-ray analysis

SALE:

Syzygium aqueum Leaves extract

References

  1. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650. https://doi.org/10.1039/C1GC15386B

    Article  CAS  Google Scholar 

  2. Vajtai R (2013) Springer handbook of nanomaterials. Springer, Berlin. https://doi.org/10.1007/978-3-642-20595-8

    Book  Google Scholar 

  3. Couvreur P (2013) Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 65(1):21–23. https://doi.org/10.1016/j.addr.2012.04.010

    Article  CAS  PubMed  Google Scholar 

  4. Raveendran P, Fu J, Wallen SL (2003) Completely “Green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941. https://doi.org/10.1021/ja029267j

    Article  CAS  PubMed  Google Scholar 

  5. Chandra H, Kumari P, Bontempi E, Yadav S (2020) Medicinal plants: treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal Agric Biotechnol 24:101518. https://doi.org/10.1016/j.bcab.2020.101518

    Article  Google Scholar 

  6. Mpungose PP, Vundla ZP, Maguire GEM, Friedrich HB (2018) The current status of heterogeneous palladium catalysed Heck and Suzuki cross-coupling reactions. Molecules 23(7):1–24. https://doi.org/10.3390/molecules23071676

    Article  CAS  Google Scholar 

  7. Fahmy SA, Preis E, Bakowsky U, El-Said Azzazy H (2020) Palladium nanoparticles fabricated by green chemistry: promising chemotherapeutic. Antioxid Antimicrob Agents Mater 13:3661. https://doi.org/10.3390/ma13173661

    Article  CAS  Google Scholar 

  8. Qazi F, Hussain Z, Tahir MN (2016) Advances in biogenic synthesis of palladium nanoparticles. RSC Adv 6:60277–60286. https://doi.org/10.1039/C6RA11695G

    Article  CAS  Google Scholar 

  9. Gowramma B, Keerthi U, Rafi M, Muralidhara Rao D (2015) Biogenic silver nanoparticles production and characterization from native stain of Corynebacterium species and its antimicrobial activity. Biotech 5(2):195–201. https://doi.org/10.1007/s13205-014-0210-4

    Article  CAS  Google Scholar 

  10. Nasrollahzadeh M, Sajjadi M, Dadashi J, Ghafuri H (2020) Pd-based nanoparticles: Plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities. Adv Coll Interface Sci 276:1–34. https://doi.org/10.1016/j.cis.2020.102103

    Article  CAS  Google Scholar 

  11. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  12. Kavitha K, Baker S, Rakshith D, Kavitha H, Harini BP, Satish S (2013) Plants as green source towards synthesis of nanoparticles. Int Res J Biological Sci 2(6):66–76

    Google Scholar 

  13. Kharissova OV, Dias HVR, Kharisov BI, Perez BO (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31(4):240–248. https://doi.org/10.1016/j.tibtech.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  14. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials (Basel) 8(11):7278–7308. https://doi.org/10.3390/ma8115377

    Article  CAS  Google Scholar 

  15. Kulkarni N, Muddapur U (2014) Biosynthesis of metal nanoparticles: a review. J Nanotechnol. https://doi.org/10.1155/2014/510246

    Article  Google Scholar 

  16. Mohamad NAN, Arham NA, Jai J, Hadi A (2013) Plant extract as reducing agent in synthesis of metallic nanoparticles: a review. Adv Mater Res 832:350–355. https://doi.org/10.4028/www.scientific.net/amr.832.350

    Article  Google Scholar 

  17. Vishnukumar P, Vivekanandhan S, Muthuramkumar S (2017) Plant-mediated biogenic synthesis of palladium nanoparticles: recent trends and emerging opportunities. Chem Biol Eng Rev 4(1):18–36. https://doi.org/10.1002/cben.201600017

    Article  Google Scholar 

  18. Yang X, Li Q, Wang H, Huang J, Lin L, Wang W, Sun D, Su Y, Opiyo JB, Hong L, Wang Y, He N, Jia L (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanopart Res 12(5):1589–1598. https://doi.org/10.1007/s11051-009-9675-1

    Article  CAS  Google Scholar 

  19. Sheny DS, Philip D, Mathew J (2012) Rapid green synthesis of palladium nanoparticles using the dried leaf of Anacardium occidentale. Spectrochim Acta Part A Mol Biomol Spectrosc 91:35–38. https://doi.org/10.1016/j.saa.2012.01.063

    Article  CAS  Google Scholar 

  20. Roopan SM, Bharathi A, Kumar R, Khanna VG, Prabhakarn A (2012) Acaricidal, insecticidal, and larvicidal efficacy of aqueous extract of Annona squamosa L peel as biomaterial for the reduction of palladium salts into nanoparticles. Colloids Surf B Biointerfaces 92:209–212. https://doi.org/10.1016/j.colsurfb.2011.11.044

    Article  CAS  PubMed  Google Scholar 

  21. Petla RM, Vivekanandhan S, Misra M, Mohanty A, Satyanarayana N (2012) Soybean (glycine max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol 3(1):14–19. https://doi.org/10.4236/jbnb.2012.31003

    Article  CAS  Google Scholar 

  22. Kalaiselvi A, Roopan SM, Madhumitha G, Ramalingam C, Elango G (2015) Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation. Spectrochim Acta Part A Mol Biomol Spectrosc 135:116–119. https://doi.org/10.1016/j.saa.2014.07.010

    Article  CAS  Google Scholar 

  23. Palliyarayil A, Jayakumar KK, Sil S, Kumar NS (2018) A facile green tea assisted synthesis of palladium nanoparticles using recovered palladium from spent palladium impregnated carbon. Johns Matthey Technol Rev 62(1):60–73. https://doi.org/10.1595/205651317X696252

    Article  CAS  Google Scholar 

  24. Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: Long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology 20(38):1–10. https://doi.org/10.1088/0957-4484/20/38/385601

    Article  CAS  Google Scholar 

  25. Nadagouda MN, Varma RS (2008) Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem 10(8):859–886. https://doi.org/10.1039/B804703K

    Article  CAS  Google Scholar 

  26. Baruwati B, Varma RS (2009) High value products from waste: Grape pomace extract-a three-in-one package for the synthesis of metal nanoparticles. Chemsuschem 2(11):1041–1044. https://doi.org/10.1002/cssc.200900220

    Article  CAS  PubMed  Google Scholar 

  27. Sathishkumar M, Sneha K, Yun Y (2009) Palladium nanocrystal synthesis using Curcuma longa Tuber extract. Int J Mater Sci 4(1):11–17

    Google Scholar 

  28. Bankar A, Joshi B, Kumar AR, Zinjarde S (2010) Banana peel extract mediated novel route for the synthesis of palladium nanoparticles. Mater Lett 64(18):1951–1953. https://doi.org/10.1016/j.matlet.2010.06.021

    Article  CAS  Google Scholar 

  29. Mallikarjuns K, Sushma NJ, Narasimha G, Venkateswara RK, Manoj L, Raju BDP (2011) Synthesis and spectroscopic characterization of palladium nanoparticles by using broth of edible mushroom extract. Proc Int Conf Nanosci Eng Technol ICONSET 2011:612–615. https://doi.org/10.1109/ICONSET.2011.6168045

    Article  Google Scholar 

  30. Farhadi K, Pourhossein A, Forough M, Molaei R, Abdi A, Siyamic A (2013) Biosynthesis of highly dispersed palladium nanoparticles using Astraglmanna aqueous extract. J Chinese Chem Soc 60(9):1144–1149. https://doi.org/10.1002/jccs.201300006

    Article  CAS  Google Scholar 

  31. Kou J, Varma RS (2012) Beet juice utilization: expeditious green synthesis of noble metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves. RSC Adv 2(27):10283–10290. https://doi.org/10.1039/C2RA21908E

    Article  CAS  Google Scholar 

  32. Mallikarjuna K, Sushma NJ, Reddy BVS, Narasimha G, Raju BDP (2013) Palladium nanoparticles: Single-step plant-mediated green chemical procedure using Piper betle leaves broth and their anti-fungal studies. Int J Chem Anal Sci 4(1):14–18. https://doi.org/10.1016/j.ijcas.2013.03.006

    Article  CAS  Google Scholar 

  33. Lakshmipathy R, Reddy BP, Sarada NC, Chidambaram K, Pasha SKK (2015) Watermelon rind-mediated green synthesis of noble palladium nanoparticles: catalytic application. Appl Nanosci 5(2):223–228. https://doi.org/10.1007/s13204-014-0309-2

    Article  CAS  Google Scholar 

  34. Santoshi kumari A, Venkatesham M, Ayodhya D, Veerabhadram G (2015) Green synthesis, characterization and catalytic activity of palladium nanoparticles by xanthan gum. Appl Nanosci 5(3):315–320. https://doi.org/10.1007/s13204-014-0320-7

    Article  CAS  Google Scholar 

  35. Ganaie SU, Abbasi T, Abbasi SA (2016) Low-cost, environment-friendly synthesis of palladium nanoparticles by utilizing a terrestrial weed Antigonon leptopus. Part Sci Technol 34(2):201–208. https://doi.org/10.1080/02726351.2015.1058874

    Article  CAS  Google Scholar 

  36. Surendra TV, Roopan SM, Arasu MV, Al-Dhabi NA, Rayalu GM (2016) RSM optimized Moringa oleifera peel extract for green synthesis of M. oleifera capped palladium nanoparticles with antibacterial and hemolytic property. J Photochem Photobiol B Biol 162:550–557. https://doi.org/10.1016/j.jphotobiol.2016.07.032

    Article  CAS  Google Scholar 

  37. Arsiya F, Sayadi MH, Sobhani S (2017) Green synthesis of palladium nanoparticles using Chlorella vulgaris. Mater Lett 186:113–115. https://doi.org/10.1016/j.matlet.2016.09.101

    Article  CAS  Google Scholar 

  38. Sharmila G, Farzana MF, Haries S, Geetha S, Manoj Kumar N, Muthukumaran C (2017) Green synthesis, characterization and antibacterial efficacy of palladium nanoparticles synthesized using Filicium decipiens leaf extract. J Mol Struct 1138:35–40. https://doi.org/10.1016/j.molstruc.2017.02.097

    Article  CAS  Google Scholar 

  39. Sayadi MH, Salmani N, Heidari A, Rezaei MR (2018) Bio-synthesis of palladium nanoparticle using Spirulina platensis alga extract and its application as adsorbent. Surf Interfaces 10:136–143. https://doi.org/10.1016/j.surfin.2018.01.002

    Article  CAS  Google Scholar 

  40. Sriramulu M, Sumathi S (2018) Biosynthesis of palladium nanoparticles using Saccharomyces cerevisiae extract and its photocatalytic degradation behaviour. Adv Nat Sci Nanosci Nanotechnol 9(2):1–6. https://doi.org/10.1088/2043-6254/aac506

    Article  CAS  Google Scholar 

  41. Anand K, Tiloke C, Phulukdaree A, Ranjan B, Chuturgoon A, Singh S, Gengan RM (2016) Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties. J Photochem Photobiol B Biol 165:87–95. https://doi.org/10.1016/j.jphotobiol.2016.09.039

    Article  CAS  Google Scholar 

  42. Kandathil V, Dateer RB, Sasidhar BS, Patil SA, Patil SA (2018) Green synthesis of palladium nanoparticles: applications in aryl halide cyanation and Hiyama cross-coupling reaction under ligand free conditions. Catal Lett 148:1562–1578. https://doi.org/10.1007/s10562-018-2369-5

    Article  CAS  Google Scholar 

  43. Liu D, Wu F (2017) Biosynthesis of pd nanoparticle using onion extract for electrochemical determination of carbendazim. Int J Electrochem Sci 12(3):2125–2134. https://doi.org/10.20964/2017.03.70

    Article  CAS  Google Scholar 

  44. Kalpana VN, Rajeswari VD (2018) Synthesis of palladium nanoparticles via a green route using Lagenaria siceraria: assessment of their innate antidandruff, insecticidal and degradation activities. Mater Res Express 5(11):1154066

    Article  Google Scholar 

  45. Olajire AA, Mohammed AA (2019) Green synthesis of palladium nanoparticles using Ananas comosus leaf extract for solid-phase photocatalytic degradation of low density polyethylene film. J Environ Chem Eng 7(4):103270. https://doi.org/10.1016/j.jece.2019.103270

    Article  CAS  Google Scholar 

  46. Søbjerg LS, Gauthier D, Lindhardt AT, Bunge M, Finster K, Meyer RL, Skrydstrup T (2009) Bio-supported palladium nanoparticles as a catalyst for Suzuki-Miyaura and Mizoroki-Heck reactions. Green Chem 11(12):2041–2046. https://doi.org/10.1039/B918351P

    Article  Google Scholar 

  47. Veisi H, Ghorbani-Vaghei R, Hemmati S, Haji Aliani M, Ozturk T (2015) Green and effective route for the synthesis of monodispersed palladium nanoparticles using herbal tea extract (Stachys lavandulifolia) as reductant, stabilizer and capping agent, and their application as homogeneous and reusable catalyst in Suzuki coupling reactions in water. Appl Organomet Chem 29(1):26–32. https://doi.org/10.1002/aoc.3243

    Article  CAS  Google Scholar 

  48. Nasrollahzadeh M, Sajadi SM, Maham M (2015) Green synthesis of palladium nanoparticles using Hippophae rhamnoides Linn leaf extract and their catalytic activity for the Suzuki-Miyaura coupling in water. J Mol Catal A Chem 396:297–303. https://doi.org/10.1016/j.molcata.2014.10.019

    Article  CAS  Google Scholar 

  49. Nasrollahzadeh M, Mohammad Sajadi S, Rostami-Vartooni A, Khalaj M (2015) Green synthesis of Pd/Fe3O4 nanoparticles using Euphorbia condylocarpa M. bieb root extract and their catalytic applications as magnetically recoverable and stable recyclable catalysts for the phosphine-free Sonogashira and Suzuki coupling reactions. J Mol Catal A Chem 396:31–39. https://doi.org/10.1016/j.molcata.2014.09.029

    Article  CAS  Google Scholar 

  50. Nasrollahzadeh M, Sajadi SM, Maham M, Ehsani A (2014) Facile and surfactant-free synthesis of Pd nanoparticles by the extract of the fruits of Piper longum and their catalytic performance for the Sonogashira coupling reaction in water under ligand and copper-free conditions. RSC Adv 3:2562–2567. https://doi.org/10.1039/C4RA12875C

    Article  CAS  Google Scholar 

  51. Veisi H, Faraji AR, Hemmati S, Gil A (2015) Green synthesis of palladium nanoparticles using Pistacia atlantica kurdica gum and their catalytic performance in Mizoroki-Heck and Suzuki-Miyaura coupling reactions in aqueous solutions. Appl Organomet Chem 29(8):517–523. https://doi.org/10.1002/aoc.3325

    Article  CAS  Google Scholar 

  52. Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Bagherzadeh M (2015) Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions. J Colloid Interface Sci 448:106–113. https://doi.org/10.1016/j.jcis.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  53. Borah RK, Saikia HJ, Mahanta A, Das VK, Bora U, Thakur AJ (2015) Biosynthesis of poly(ethylene glycol)-supported palladium nanoparticles using Colocasia esculenta leaf extract and their catalytic activity for Suzuki-Miyaura cross-coupling reactions. RSC Adv 5(89):72453–72457. https://doi.org/10.1039/C5RA12657F

    Article  CAS  Google Scholar 

  54. Nasrollahzadeh M, Mohammad Sajadi S (2016) Pd nanoparticles synthesized in situ with the use of Euphorbia granulate leaf extract: catalytic properties of the resulting particles. J Colloid Interface Sci 462:243–251. https://doi.org/10.1016/j.jcis.2015.09.065

    Article  CAS  PubMed  Google Scholar 

  55. Nasrollahzadeh M, Sajadi SM (2016) Green synthesis of Pd nanoparticles mediated by Euphorbia thymifolia L. leaf extract: catalytic activity for cyanation of aryl iodides under ligand-free conditions. J Colloid Interface Sci 469:191–195. https://doi.org/10.1016/j.jcis.2016.02.024

    Article  CAS  PubMed  Google Scholar 

  56. Veisi H, Nasrabadi NH, Mohammadi P (2016) Biosynthesis of palladium nanoparticles as a heterogeneous and reusable nanocatalyst for reduction of nitroarenes and Suzuki coupling reactions. Appl Organomet Chem 30(11):890–896. https://doi.org/10.1002/aoc.3517

    Article  CAS  Google Scholar 

  57. Liu G, Bai X, Lv H (2017) Biosynthesis of supported Pd nanoparticles using poplar leaf as a reducing agent and carrier: a green route to highly efficient and reusable Suzuki coupling reaction catalyst. Inorg Nano-Metal Chem 47(8):1226–1233. https://doi.org/10.1080/24701556.2017.1284114

    Article  CAS  Google Scholar 

  58. Liu G, Bai X, Lv H (2017) Green synthesis of supported palladium nanoparticles employing pine needles as reducing agent and carrier: new reusable heterogeneous catalyst in the Suzuki coupling reaction. Appl Organomet Chem 31(4):1–7. https://doi.org/10.1002/aoc.3587

    Article  CAS  Google Scholar 

  59. Sarmah M, Dewan A, Mondal M, Thakur AJ, Bora U (2016) Analysis of the water extract of waste papaya bark ash and its implications as an in situ base in the ligand-free recyclable Suzuki-Miyaura coupling reaction. RSC Adv 6(34):28981–28985. https://doi.org/10.1039/C6RA00454G

    Article  CAS  Google Scholar 

  60. Sarmah M, Dewan A, Thakur AJ, Bora U (2017) Extraction of base from Eichhornia crassipes and its implication in palladium-catalyzed Suzuki cross-coupling reaction. Chem Sel 2(24):7091–7095. https://doi.org/10.1002/slct.201701057

    Article  CAS  Google Scholar 

  61. Dewan A, Sarmah M, Thakur AJ, Bharali P, Bora U (2018) Greener biogenic approach for the synthesis of palladium nanoparticles using papaya peel: an eco-friendly catalyst for C-C coupling reaction. ACS Omega 3(5):5327–5335. https://doi.org/10.1021/acsomega.8b00039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kandathil V, Dateer RB, Sasidhar BS, Patil SA, Patil SA (2018) Green synthesis of palladium nanoparticles: applications in aryl halide cyanation and Hiyama cross-coupling reaction under ligand free conditions. Catal Lett 148(6):1562–1578. https://doi.org/10.1007/s10562-018-2369-5

    Article  CAS  Google Scholar 

  63. Nasrollahzadeh M, Ghorbannezhad F, Sajadi SM, Varma RS (2019) Pd nanocatalyst adorning coral reef nanocomposite for the synthesis of nitriles: Utility of cucurbita pepo leaf extract as a stabilizing and reducing agent. Nanomaterials 9(4):565. https://doi.org/10.3390/nano9040565

    Article  CAS  PubMed Central  Google Scholar 

  64. Hemmati S, Yousefi M, Salehi MH, Amiri M, Hekmati M (2020) Palladium nanoparticles immobilized over Strawberry fruit extract coated Fe3O4 NPs: A magnetic reusable nanocatalyst for Suzuki-Miyaura coupling reactions. Appl Organomet Chem 34(8):1–8. https://doi.org/10.1002/aoc.5653

    Article  CAS  Google Scholar 

  65. Manjare SB, Chaudhari RA (2020) Palladium nanoparticle-bentonite hybrid using leaves of Syzygium aqueum plant from India: design and assessment in the catalysis of –C–C– coupling reaction. Chem Afr 3(2):329–341. https://doi.org/10.1007/s42250-020-00139-2

    Article  CAS  Google Scholar 

  66. Manjare SB, Chaudhari RA (2020) Environment-friendly synthesis of palladium nanoparticles loaded on Zeolite Type-Y (Na-form) using Anacardium Occidentale shell extract (Cashew nut shell extract), characterization and application in -C-C- coupling reaction. J Environ Chem Eng 8(5):104213. https://doi.org/10.1016/j.jece.2020.104213

    Article  CAS  Google Scholar 

  67. Khan M, Khan M, Kuniyil M, Adil SF, Al-Warthan A, Alkhathlan HZ, Tremel W, Tahir MN, Siddiqui MRH (2014) Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction. Dalt Trans 43(24):9026–9031. https://doi.org/10.1039/C3DT53554A

    Article  CAS  Google Scholar 

  68. Nasrollahzadeh M, Mohammad Sajadi S (2016) Green synthesis, characterization and catalytic activity of the Pd/TiO2 nanoparticles for the ligand-free Suzuki-Miyaura coupling reaction. J Colloid Interface Sci 465:121–127. https://doi.org/10.1016/j.jcis.2015.11.038

    Article  CAS  PubMed  Google Scholar 

  69. Baruah D, Das RN, Hazarika S, Konwar D (2015) Biogenic synthesis of cellulose supported Pd(0) nanoparticles using hearth wood extract of Artocarpus lakoocha Roxb—a green, efficient and versatile catalyst for Suzuki and Heck coupling in water under microwave heating. Catal Commun 72:73–80. https://doi.org/10.1016/j.catcom.2015.09.011

    Article  CAS  Google Scholar 

  70. Lebaschi S, Hekmati M, Veisi H (2017) Green synthesis of palladium nanoparticles mediated by black tea leaves (Camellia sinensis) extract: Catalytic activity in the reduction of 4-nitrophenol and Suzuki-Miyaura coupling reaction under ligand-free conditions. J Colloid Interface Sci 485:223–231. https://doi.org/10.1016/j.jcis.2016.09.027

    Article  CAS  PubMed  Google Scholar 

  71. Seyedi N, Saidi K, Sheibani H (2018) Green synthesis of Pd nanoparticles supported on magnetic graphene oxide by Origanum vulgare leaf plant extract: catalytic activity in the reduction of organic dyes and Suzuki-Miyaura cross-coupling reaction. Catal Lett 148(1):277–288. https://doi.org/10.1007/s10562-017-2220-4

    Article  CAS  Google Scholar 

  72. Kannaiyan P, Raiza AJ, Ramya R, Devi S (2015) Biogenic synthesis of palladium nanoparticles modified graphene using Ficus carica fruit extract and study its catalytic activity in organic synthesis. Int J Chem Tech Res 7(3):1247–1252

    Google Scholar 

  73. Garel C, Renard BL, Escande V, Galtayries A, Hesemann P, Grison C (2015) C-C bond formation strategy through ecocatalysis: Insights from structural studies and synthetic potential. Appl Catal A Gen 504:272–286. https://doi.org/10.1016/j.apcata.2015.01.021

    Article  CAS  Google Scholar 

  74. Kora AJ, Rastogi L (2018) Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst. Arab J Chem 11(7):1097–1106. https://doi.org/10.1016/j.arabjc.2015.06.024

    Article  CAS  Google Scholar 

  75. Kumar B, Smita K, Cumbal L, Debut A (2015) Ultrasound agitated phytofabrication of palladium nanoparticles using Andean blackberry leaf and its photocatalytic activity. J Saudi Chem Soc 19(5):574–580. https://doi.org/10.1016/j.jscs.2015.05.008

    Article  Google Scholar 

  76. Veisi H, Rostami A, Shirinbayan M (2016) Greener approach for synthesis of monodispersed palladium nanoparticles using aqueous extract of green tea and their catalytic activity for Suzuki-Miyaura coupling reaction and the reduction of nitroarenes. Appl Organomet Chem 31(6):1–9. https://doi.org/10.1002/aoc.3609

    Article  CAS  Google Scholar 

  77. Khan M, Albalawi GH, Shaik MR, Khan M, Adil SF, Kuniyil M, Alkhathlan HZ, Al-Warthan A, Siddiqui MRH (2016) Miswak mediated green synthesized palladium nanoparticles as effective catalyst for Suzuki coupling reactions in aqueous media. J Saudi Chem Soc 21(4):450–457. https://doi.org/10.1016/j.jscs.2016.03.008

    Article  CAS  Google Scholar 

  78. Majumdar R, Tantayanon S, Bag BP (2017) Synthesis of palladium nanoparticles with leaf extract of Chrysophyllum cainito (Star apple) and their applications as efficient catalyst for C-C coupling and reduction reactions. Int Nano Lett 7:267–274. https://doi.org/10.1007/s40089-017-0220-4

    Article  CAS  Google Scholar 

  79. Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM (2020) Rosmarinus officinalis directed palladium nanoparticle synthesis: investigation of potential anti-bacterial, anti-fungal and Mizoroki-Heck catalytic activities. Adv Power Technol Technol 31:1–10. https://doi.org/10.1016/j.apt.2020.01.024

    Article  CAS  Google Scholar 

  80. Yang F, Cao B, Tao Y, Cao D, Zhang Y (2016) Nicotinamide-assisted fabrication of high-stability gold-palladium nanoparticles on carbon fiber cloth for hydrogen peroxide electroreduction. Electrochim Acta 210:199–205. https://doi.org/10.1016/j.electacta.2016.05.152

    Article  CAS  Google Scholar 

  81. Borah RK, Mahanta A, Dutta A, Bora U, Thakur AJ (2017) A green synthesis of palladium nanoparticles by Sapindus mukorossi seed extract and use in efficient room temperature Suzuki-Miyaura cross-coupling reaction. Appl Organomet Chem 31(11):1–9. https://doi.org/10.1002/aoc.3784

    Article  CAS  Google Scholar 

  82. Veisi H, Rashtiani A, Barjasteh V (2016) Biosynthesis of palladium nanoparticles using Rosa canina fruit extract and their use as a heterogeneous and recyclable catalyst for Suzuki-Miyaura coupling reactions in water. Appl Organomet Chem 30:231–235. https://doi.org/10.1002/aoc.3421

    Article  CAS  Google Scholar 

  83. Hazarika M, Borah D, Bora P, Silva AR, Das P (2017) Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent. PLoS ONE 12(9):1–19. https://doi.org/10.1371/journal.pone.0184936

    Article  CAS  Google Scholar 

  84. Khodadadi B, Bordbar M, Nasrollahzadeh M (2017) Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: catalytic activity for reduction of organic dyes. J Colloid Interface Sci 490:1–10. https://doi.org/10.1016/j.jcis.2016.11.032

    Article  CAS  PubMed  Google Scholar 

  85. Mallikarjuna K, Bathula C, Buruga K, Shrestha NK, Noh YY, Kim H (2017) Green synthesis of palladium nanoparticles using fenugreek tea and their catalytic applications in organic reactions. Mater Lett 205:138–141. https://doi.org/10.1016/j.matlet.2017.06.081

    Article  CAS  Google Scholar 

  86. Hekmati M, Bonyasi F, Javaheri H, Hemmati S (2016) Green synthesis of palladium nanopartilces using Hibiscus sabdariffa L. flower extract: heterogenous and reusable nanocatalyst in Suzuki coupling reaction. Appl Organomet Chem 31(11):1–7. https://doi.org/10.1002/aoc.3757

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Prafulla B. Sawant, Ratnagiri, Maharashtra, India for his kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish B. Manjare.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjare, S.B., Pendhari, P.D., Badade, S.M. et al. Palladium Nanoparticles: Plant Aided Biosynthesis, Characterization, Applications. Chemistry Africa 4, 715–730 (2021). https://doi.org/10.1007/s42250-021-00284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-021-00284-2

Keywords

Navigation