Skip to main content

Advertisement

Log in

Micellar Effect on Electron Transfer Reaction of 2-(hydroxyethyl)ethylenediaminetriacetatoiron(III) Complex with Thiocarbonate Ion: Kinetic Model

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

2-(Hydroxyethyl)ethylenediaminetriacetatoiron(III) ion reduction with thiocarbonate (CO2S2−) in the presence and absence of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) micelles at 33 ± 1 °C, µ = 0.1 C2 M and maximum absorption = 490 nm has been investigated spectrophotometrically. The redox reaction follows pseudo-first-order kinetics which resulted to first order with respect to concentration of the both redox species with a correlation coefficient R2 = 0.944 and R2 = 0.9753, respectively for the complex and thiocarbonate ion. The rate of reaction accelerated and decelerated with a change in salt concentration (KNO3) and solvent polarity (water/acetone mixture), respectively. The reaction is catalysed and inhibited by the positive electrostatic charged (CTAB) and the negative electrostatic charged (SDS) surfactants, respectively. Catalysis results are explained following the hydrophobic and electrostatic interactions between micelle aggregates and redox species, the binding constant of the complex and the thiocarbonate ion of the two micelles, and the Berezin procedure. Approximately 1.935 M−1 s−1, 0.9686 M−1 s−1, 54.619 M−1 s−1 and a total of 0.00 M−1 s−1 are obtained for the complex/CTAB, thiocarbonate ion/CTAB, complex/SDS and binding thiocarbonate ion/SDS constants, respectively. The micellar effect on this bimolecular reaction is treated in a way similar to the enzymatic catalysis where in the model assumes association of the reactants (S) to the micellar molecular (Q) as shown below;

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berezin IV, Martinek K, Yatsimirskii AK (1973) Physicochemical foundations of micellar catalysis. Russ Chem Rev 42(10):787–802

    Article  Google Scholar 

  2. Malik AR, Dileep K (2019) Interaction of ninhydrin with zinc(II) complex of tryptophan in the three dicationic gemini surfactants. Colloid Polym Sci 297(11–12):1519–1527. https://doi.org/10.1007/s00396-019-04569-4

    Article  CAS  Google Scholar 

  3. Dileep K, Malik AR (2019) Study of zinc-glycylglycine complex with ninhydrin in aqueous and cationic micellar media: a spectrophotometric technique. Tenside Surfactants Deterg 56(4):312–318

    Article  Google Scholar 

  4. Rub MA, Kumar D (2019) Influence of cationic cetyltrimethylammonium bromide on rate of Zn(II)-histidine complex and ninhydrin. J Oleo Sci 68:1231–1240

    Article  Google Scholar 

  5. Gustavsson H, Lindman B (1975) Nuclear magnetic resonance studies of the interaction between alkali ions and micellar aggregates. J Am Chem 97(14):3923–3930. https://doi.org/10.1021/ja00847a009

    Article  CAS  Google Scholar 

  6. Fox KK, Robb ID, Smith R (1972) Solubilisation of p-xylene in sodium dodecy sulphate micelles. J Chem Soc Faraday Transit 1(68):445–449. https://doi.org/10.1039/F19726800445

    Article  Google Scholar 

  7. Oakes J (1973) Magnetic resonance studies in aqueous systems. Part 3. Electron spin and nuclear magnetic relaxation study of interactions between manganese ions and micelles. J Chem Soc Faraday Trans 69:1321–1329. https://doi.org/10.1039/F29736901321

    Article  CAS  Google Scholar 

  8. Atanu R, Suman C, Animesh A, Indukamal D, Kuheli D, Satyajit B, Shuvendu SB, Bidyut S (2020) Hetero-aromatic n-base-promoted oxidation of 4-chlorobenzyl alcohol by Cr(VI) in micellar media. Res Chem Intermed 46(2559):1–20. https://doi.org/10.1007/s11164-020-04106-x

    Article  CAS  Google Scholar 

  9. Suman C, Atanu R, Animesh A, Kalachand M, Bidyut S (2020) Surface phenomenon in micellar media: an excellent controlling factor for oxidation of fatty aldehyde in aqueous medium. J Mol Liq 310(113224):1–10. https://doi.org/10.1016/j.molliq.2020.113224

    Article  CAS  Google Scholar 

  10. Pintu S, Aniruddha G, Alessandro S, Bidyut S (2019) Surfactant for better tomorrow: applied aspect of surfactant aggregates from laboratory to industry. Res Chem Intermed 45(6021):1–21. https://doi.org/10.1007/s11164-019-04017-6

    Article  CAS  Google Scholar 

  11. Bunton CA, Carrasco N, Huang SK, Paik CH, Romsted LS (1978) Reagent distribution and micellar catalysis of carbocation reactions. J Am Chem Soc 100:5420–5425

    Article  CAS  Google Scholar 

  12. Singh M (2014) Kinetic treatment of the reaction of fructose and n-bromosuccinimide in cationic/anionic/nonionic micelles. J Soft Matter. https://doi.org/10.1155/2014/791563

    Article  Google Scholar 

  13. Pintu S, Bidgut S (2020) Potential application of micellar nanoreactor for electron transfer reactions mediated by a variety of oxidants: a review. Adv Colloid Interface Sci 284(102241):1–14. https://doi.org/10.1016/j.cis.2020.102241

    Article  CAS  Google Scholar 

  14. Soriyan OO, Owoyomi O (2008) Periodate oxidation of dicyano-bis-(1,10-phenanthroline) iron(II) dihydrate in aqueous sodium dodecyl sulphate (SDS). Transit Met Chem 33:121–126. https://doi.org/10.1007/s11243-007-9036-9

    Article  CAS  Google Scholar 

  15. Raducan A, Olteanu A, Puiu M, Oancea D (2008) Influence of surfactants on the fading of malachite green. Cent Eur J Chem 6(1):89–92. https://doi.org/10.2478/s11532-007-0066-0

    Article  CAS  Google Scholar 

  16. Balakumar S, Thanasekaram P, Rajkumar E, Adaikalasamy KJ, Rajagopal S, Ramaraj R (2006) Micellar catalysis on the electron transfer reactions of iron(III)-polypyridyl complexes with organic sulfides—importance of hydrophobic interactions. J R Soc Chem 2:352–358

    Google Scholar 

  17. Laguta AN, Eltsov SV, Mchedlov-Petrossyan NO (2018) Kinetics of alkaline fading of methyl violet in micellar solutions of surfactants: comparing Piszkiewicz’s, Berezin’s, and pseudophase ion-exchange models. Int J Chem Kinet. https://doi.org/10.1002/kin.21231

    Article  Google Scholar 

  18. Esan OS (2014) Effect of micellar aggregate on the kinetics and mechanism of the reaction between ethylene glycol and periodate. Int Sch Res Not 2014:1–3

    Article  Google Scholar 

  19. Ogunlusi GO, Oyetunji OA, Owoyomi O, Ige J (2016) Effects of alkyltrimethylammonium bromide surfactants on the kinetics of the oxidation of tris(1,10-phenanthroline)iron(II) by azidopentacyanocobaltate(III) complex. J Dispers Sci Technol. https://doi.org/10.1080/01932691.2016.1225218

    Article  Google Scholar 

  20. Schneppensieper T, Seibig S, Zahl A, Tregloan P, Eldik RV (2001) Influence of chelate effects on the water-exchange mechanism of polyaminecarboxylate complexes of iron(III). Inorg Chem 40(15):3670–3676

    Article  CAS  Google Scholar 

  21. Wubs HJ, Beenackers AACM (1994) Kinetics of H2S absorption into aqueous ferric solutions of EDTA and HEDTA. AlChE J 40(3):433–444

    Article  CAS  Google Scholar 

  22. Nkole IU, Osunkwo CR, Onu AD, Idris SO (2018) Kinetics and mechanism of the reduction of n-(2-hydroxyethyl)ethylenediaminetriacetateiron(III) complex by thioglycol in bicarbonate buffer medium. Int J Adv Chem 6(1):102–107. https://doi.org/10.14419/ijac.v6i1.10902

    Article  Google Scholar 

  23. Abdulsalam S, Idirs SO, Shallangwa GA, Onu AO (2020) Reaction of n,n1-phenylenebis(salicyalideneiminato)cobalt(III) and l-cysteine in mixed aqueous medium: kinetics and mechanism. Heliyon 6(e3050):1–8. https://doi.org/10.1016/j.heliyon.2020.e03850

    Article  Google Scholar 

  24. Arthur DE, Nkole IU, Osunkwo CR (2020) Electron transfer reaction of tris-(1,10-phenanthroline)cobalt(III) complex and iodide ion in an aqueous acidic medium. Chem Afr. https://doi.org/10.1007/s42250-020-00201-z

    Article  Google Scholar 

  25. Feigl F (1966) Spot tests in organic analysis. Elsevier Publishing Company, London, pp 540–545

    Google Scholar 

  26. Nkole IU, Onu AD, Osunkwo CR, Idris SO (2018) Kinetic approach to the mechanism of the redox reaction of ethylenediaminetetraacetatoferrate(III) complex and thioglycolic acid in bicarbonate buffer medium. ATBU J Sci Technol Educ (JOSTE) 6(4):6–19

    Google Scholar 

  27. Ghosh GK, Misra K, Baskim M, Linert W, Moi SC (2013) Kinetics and mechanism of the interaction of di-μ-hydroxo-bis(1,10-phenanthroline)dipalladium(II) perchlorate with thioglycolic acid and glutathione in aqueous solution. J Solut Chem 42:526–543

    Article  CAS  Google Scholar 

  28. Astray G, Cid A, Manso JA, Mejuto JC, Moldes O, Morales J (2011) Influence of anionic and nonionic micelles upon hydrolysis of 3-hydroxy-carbofuran. Int J Chem Kinet 43:402–408

    Article  CAS  Google Scholar 

  29. Sar P, Ghosh A, Susanta M, Dhiman R, Bijan D, Saha B (2016) Selective heteroaromatic nitrogen base promoted chromium(VI) oxidation of isomeric pentanols in aqueous micellar media at room temperature. J Ind Eng Chem 42:53–62. https://doi.org/10.1016/j.jiec.2016.07.028

    Article  CAS  Google Scholar 

  30. Sar P, Ghosh A, Saha R, Saha B (2014) Micellar effect on pentavalent vanadium oxidation of methanol to formaldehyde to formic acid in aqueous acid media at room temperature. Res Chem Intermed. https://doi.org/10.1007/s11164-014-1635-4

    Article  Google Scholar 

  31. Sar P, Saha B (2020) Potential application of micellar nanoreactor for electron transfer reactions mediated by a variety of oxidants: a review. Adv Colloid Interface Sci 284(102241):1–14. https://doi.org/10.1016/j.cis.2020.102241

    Article  CAS  Google Scholar 

Download references

Funding

This study did not receive any specific grant from funding agencies in the public, commercial or private sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. U. Nkole.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nkole, I.U., Abdulsalam, S., Ibrahim, I. et al. Micellar Effect on Electron Transfer Reaction of 2-(hydroxyethyl)ethylenediaminetriacetatoiron(III) Complex with Thiocarbonate Ion: Kinetic Model. Chemistry Africa 4, 525–533 (2021). https://doi.org/10.1007/s42250-021-00241-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-021-00241-z

Keywords

Navigation