Skip to main content
Log in

Fast and Sensitive Detection of Bisphenol A and 4-n-Octylphenol in Foods Based on a 2D Graphitic Carbon Nitride (g-C3N4)/Gold Nano-Composite Film

Chemistry Africa Aims and scope Submit manuscript

Cite this article

Abstract

In this paper, graphite phase carbon nitride (g-C3N4) was prepared by one-step high temperature thermal decomposition method, and layered g-C3N4 was prepared by protonation with concentrated hydrochloric acid. The morphology and composition of g-C3N4 were characterised by transmission electron microscope (TEM), energy dispersive spectroscopy (EDS) and X-ray powder diffraction (XRD). Furthermore, the AuNPs-g-C3N4/GCE was constructed by coating method and potentiostatic deposition method, and the construction process and resistance change of the electrodes were characterised by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experimental results indicated that the AuNPs-g-C3N4/GCE has excellent electrocatalytic performance for bisphenol A (BPA) and 4-n-octylphenol (OP). Under optimized experimental conditions, BPA and OP were detected by differential pulse voltammetry (DPV) at the AuNPs-g-C3N4/GCE. The linear ranges were 0.1–6.5 µmol L−1 and 0.1–3.8 µmol L−1 for BPA and OP, wtih the detection limits of 0.0176 µmol L−1 and 0.0324 µmol L−1, respectively. In addition, the AuNPs-g-C3N4/GCE showed satisfactory reproducibility and stability and can be successfully applied to monitor of BPA and OP in baby formula samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jiang DQ, Chen WQ, Zeng X, Tang L (2018) Environ Sci Technol 52:3706–3715

    CAS  PubMed  Google Scholar 

  2. Qiu W, Zhan H, Hu J, Zhang T, Xu H, Wong M, Xu B, Zheng C (2019) Ecotox Environ Safe 173:192–202

    CAS  Google Scholar 

  3. Llevot A, Meier MA (2016) Green Chem 18:4800–4803

    CAS  Google Scholar 

  4. Sheikh IA (2020) Life Sci 253:117738

    CAS  PubMed  Google Scholar 

  5. Jalalvand AR, Haseli A, Farzadfar F, Goicoechea HC (2019) Talanta 201:350–357

    CAS  PubMed  Google Scholar 

  6. Wang Z, Liu H, Liu S (2017) Adv Sci 4:1600248

    Google Scholar 

  7. Wu X, Zhu LYX, He C, Wang Q, Liu S (2017) Talanta 162:57–64

    CAS  PubMed  Google Scholar 

  8. Kwak JI, Moon J, Kim D, Cui R, An YJ (2018) J Hazard Mater 344:390–397

    CAS  PubMed  Google Scholar 

  9. Yao Y, Shao Y, Zhan M, Zou X, Qu W, Zhou Y (2018) Anal Bioanal Chem 410:3871–3883

    CAS  PubMed  Google Scholar 

  10. Simonelli A, Guadagni R, De Franciscis P, Colacurci N, Pieri M, Basilicata P, Pedata P, Lamberti M, Sannolo N, Miraglia N (2017) Int Arch Occup Environ Health 90:49–61

    CAS  PubMed  Google Scholar 

  11. Stolz A, Schönfelder G, Schneider MR (2018) Trends Endocrinol Metab 29:69–71

    PubMed  Google Scholar 

  12. Xiao C, Wang L, Zhou Q, Huang X (2020) J Hazard Mater 384:121488

    CAS  PubMed  Google Scholar 

  13. Azzouz A, Rascon AJ, Ballesteros E (2016) J Pharmaceut Biomed 119:16–26

    CAS  Google Scholar 

  14. Chung SH, Ding WH (2018) J Pharmaceut Biomed 149:572–576

    CAS  Google Scholar 

  15. Er EO, Caglak A, Engin GO, Bakirdere S (2019) Microchem J 146:423–428

    CAS  Google Scholar 

  16. Li XH, Li S, Bai JL, Peng Y, Ning BA, Shi HM, Kang WJ, Zhou HY, Gao ZX (2020) J Chromatogr Sci 58:280–286

    CAS  PubMed  Google Scholar 

  17. Xiao ZM, Wang RG, Suo DC, Li T, Su XO (2020) Food Chem 327:126882

    CAS  PubMed  Google Scholar 

  18. Deceuninck Y, Bichon E, Geny T, Veyrand B, Grandin F, Viguie C, Marchand P, Le Bizec B (2019) J Chromatogr A 1601:232–242

    CAS  PubMed  Google Scholar 

  19. Miao WB, Wei BW, Yang RJ, Wu CH, Lou D, Jiang W, Zhou ZJ (2014) New J Chem 38:669–675

    CAS  Google Scholar 

  20. Lu Y, Peterson JR, Gooding JJ, Lee NA (2012) Anal Bioanal Chem 403:1607–1618

    CAS  PubMed  Google Scholar 

  21. Freitas M, Wachter N, Rocha RC (2020) Talanta 217:121041

    CAS  PubMed  Google Scholar 

  22. Koyun O, Gorduk S, Gencten M, Sahin Y (2019) New J Chem 43:85–92

    CAS  Google Scholar 

  23. Zheng QL, Yang P, Xu H, Liu JS, Jin LT (2012) J Environ Sci 24:1717–1722

    CAS  Google Scholar 

  24. Ali MY, UI Alam A, Howlader MMR (2020) Sensor Actuator B Chem 320:128319

    CAS  Google Scholar 

  25. Zou J, Zhao GQ, Teng J, Liu Q, Jiang XY, Jiao FP, Yu JG (2019) Microchem J 145:693–702

    CAS  Google Scholar 

  26. Ben Messaound N, Lahcen AA, Dridi C, Amine A (2018) Sensor Actuat B Chem 276:304–312

    Google Scholar 

  27. Ben Messaoud N, Ghica ME, Dridi C, Ben Ali M, Brett CMA (2017) Sensor Actuat B Chem 253:513–522

    CAS  Google Scholar 

  28. Masih D, Ma Y, Rohani S (2017) Appl Catal B Environ 206:556–588

    CAS  Google Scholar 

  29. Tong ZW, Yang D, Li Z, Nan YH, Ding F, Shen YC, Jiang ZY (2017) ACS Nano 11:1103–1112

    CAS  PubMed  Google Scholar 

  30. Ai C, Li J, Yang L, Wang Z, Zeng Y, Deng R, Lin S, Wang CZ (2020). Chemsuschem. https://doi.org/10.1002/cssc.202001048

    Article  PubMed  Google Scholar 

  31. Xiao M, Luo B, Wang SC, Wang LZ (2018) J Energy Chem 27:1111–1123

    Google Scholar 

  32. Xu YX, Zhou YF, Zhou JY, Guo JY, Zhang SY, Lu Y (2019) J Alloy Compd 806:343–349

    CAS  Google Scholar 

  33. Chen AY, Zhang TT, Qiu YJ, Wang D, Wang P, Li HJ, Li Y, Yang JH, Wang XY, Xie XF (2019) Electrochim Acta 294:260–267

    CAS  Google Scholar 

  34. Yuan QM, Li L, Tang YR, Zhang XF (2020) Sensor Actuat B Chem 318:128238

    CAS  Google Scholar 

  35. Li Y, Bu YY, Jiang FQ, Dai XY, Ao JP (2020) Biosens Bioelectron 150:111903

    CAS  PubMed  Google Scholar 

  36. Li PP, Cao Y, Mao CJ, Jin BK, Zhu JJ (2019) Anal Chem 91:1563–1570

    CAS  PubMed  Google Scholar 

  37. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Chem Rev 116:7159–7329

    CAS  PubMed  Google Scholar 

  38. Masih D, Ma YY, Rohani S (2017) Appl Cata B Environ 206:556–558

    CAS  Google Scholar 

  39. Lin XY, Wang YF, Zou MM, Ni YN (2019) Anal Methods 11:1353–1360

    CAS  Google Scholar 

  40. Wang YF, Guo Y, Pan KM, Lin XY, Ni YN (2020) Chem Afr 3:727–734

    CAS  Google Scholar 

  41. He SG, Ma Y, Zhou JY, Zeng J, Liu XF, Huang ZY, Chen XM, Chen X (2019) Talanta 191:400–408

    CAS  PubMed  Google Scholar 

  42. Gerdin HS, Sarhadi H, Tajik S (2020). Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1790548

    Article  Google Scholar 

  43. Rais NSM, Isa IM, Hashim N, Saidin MI, Yazid SMAM, Ahmad MS, Zainul R, Suyanta MS (2019) Int J Electrochem Sci 14:7911–7924

    CAS  Google Scholar 

  44. Pan YH, Zhao FQ, Zeng BZ (2015) RSC Adv 5:57671–57677

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this study by the National Natural Science Foundation of China (NSFC-31860468), and the Science and Technology Innovation Platform Project of Jiangxi Province (NO. 20192BCD40001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Lin.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, M., Zou, S., Hu, C. et al. Fast and Sensitive Detection of Bisphenol A and 4-n-Octylphenol in Foods Based on a 2D Graphitic Carbon Nitride (g-C3N4)/Gold Nano-Composite Film. Chemistry Africa 4, 367–377 (2021). https://doi.org/10.1007/s42250-021-00227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-021-00227-x

Keywords

Navigation